Skip to main content
Log in

Nuclear reactions and physical models for neutron activation analysis

  • Published:
Journal of Radioanalytical and Nuclear Chemistry Aims and scope Submit manuscript

Abstract

Neutron activation analysis, especially in its \(k_0\) standardization is fairly robust down to the level of accuracy of a few percent, but further improvement is riddled with difficulties, i.e. multiple physical effects having opposite influences and introducing bias and uncertainty in the measured results. It is the aim of this paper to give a comprehensive review of the physical models in \(k_0\)-NAA, by providing exact definitions of the physical quantities, detailing the procedures used for the determination of the physical constants and by discussing the approximations and sources of uncertainty therein. Furthermore, indications are given on how accurately known \(k_0\)-NAA constants can be of value for other applications, namely the measurement and validation of nuclear cross sections.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Notes

  1. In energy bin (group) representation, \(K=\phi _{1\,{\mathrm{{eV}}}} / \ln (E_2 / E_1)\), where \(\phi _{1\,{\mathrm{{eV}}}}\) is the group flux in the energy bin around 1 eV and \(E_1\) and \(E_2\) are the corresponding energy bin boundaries.

References

  1. Greenberg RR, Bode P, de Fernandes EAN (2011) Neutron activation analysis: a primary method of measurement. Spectrochim Acta B: Atom Spectrosc 66(34):193–241

    Article  CAS  Google Scholar 

  2. Gladney ES et al (1987) Standard reference materials: compilation of elemental concentration data for NBS chemical, biological, geological and environmental SRMs. NIST, Gaithersburg, MD (NBS special publication)

    Google Scholar 

  3. Simonits A, de Corte F, Hoste J (1975) Single comparator methods in reactor neutron activation analysis. J Radioanal Nucl Chem 24(1):31–46

    Article  CAS  Google Scholar 

  4. Westcott CH, Walker WH, Alexander TK (1958) Effective cross sections and cadmium ratios for the neutron spectra of thermal reactors. In: Proceedings of the 2nd international conference on peaceful use of atomic energy. Geneva, New York, 16, pp 70–76

  5. Westcott CH (1960) Effective cross section values for well-moderated thermal reactor spectra., AECL-1101Atomic Energy of Canada Limited, Ontario, Canada

    Google Scholar 

  6. van Sluijs R, Jaćimović R, Kennedy G (2014) A simplified method to replace the Westcott formalism in \(k_0\)-NAA using non-1/v nuclides. J Radioanal Nucl Chem 300:539–545

    Article  Google Scholar 

  7. Salgado J, Goncalves IF, Martinho E (2004) Development of a unique curve for thermal neutron self-shielding factor in spherical scattering materials. Nucl Sci Eng 148:426–428

    CAS  Google Scholar 

  8. de Corte F (1987) The k\(_{0}\)-standardization method, a move to the optimization of neutron activation analysis. Ph.D. thesis, University of Gent, Belgium

  9. Blaauw M (1996) The derivation use proper, of Stewart’s formula for thermal neutron self-shielding in scattering media. Nucl Sci Eng 124:431–435

    CAS  Google Scholar 

  10. el Nimr T, de Corte F, Moens L, Simonits A, Hoste J (1981) Epicadmium neutron activation analysis (ENAA) based on the \(k_0\)-comparator method. J Radioanal Nucl Chem 67(2):421–435

    Article  Google Scholar 

  11. Simonits A, de Corte F, el Nimr T, Moens L, Hoste J (1984) Comparative study of measured and critically evaluated resonance integral to thermal cross-section ratios, part II. J Radioanal Nucl Chem 81(2):397–415

    Article  CAS  Google Scholar 

  12. Leszczynski F, Aldama DL, Trkov A (2003) WIMS-D library update. International Atomic Energy Agency. http://www-pub.iaea.org/MTCD/publications/PDF/Pub1264_web.pdf

  13. Trkov A, Žerovnik G, Snoj L, Ravnik M (2009) On the self-shielding factors in neutron activation analysis. Nucl Instrum Method A 610(2):553–565

    Article  CAS  Google Scholar 

  14. Moens L, Simonits A, de Corte F, Hoste J (1979) Comparative study of measured and critically evaluated resonance integral to thermal cross-section ratios, part I. J Radioanal Chem 54(1—-2):377–390

    Article  CAS  Google Scholar 

  15. Jovanović S, de Corte F, Moens L, Simonits A, Hoste J (1984) Some elucidations to the concept of the effective resonance energy \(\bar{E_r}\). J Radioanal Nucl Chem 82:379–383

    Article  Google Scholar 

  16. Jovanović S et al (1987) The effective resonance energy as a parameter in \((n,\gamma )\) activation analysis with reactor neutrons. J Radioanal Nucl 113(1):177–185

    Article  Google Scholar 

  17. Radulović V, Trkov A, Jaćimović R, Jeraj R (2013) Measurement of the neutron activation constants \(Q_0\) and \(k_0\) for the \({}^{27}{\text{ Al }}(n,\gamma ){}^{28}{\text{ Al }}\) reaction at the JSI TRIGA Mark II reactor. J Radioanal Nucl Chem 268:1791–1800

    Article  Google Scholar 

  18. Jaćimović R, Trkov A, Žerovnik G, Snoj L, Schillebeeckx P (2010) Validation of calculated self-shielding factors for Rh foils. Nucl Inst Method A 622(2):399–402

    Article  Google Scholar 

  19. de Corte F, Simonits A (1989) \(k_0\)-Measurements and related nuclear data compilation for \((n,\gamma )\) reactor neutron activation analysis. J Radioanal Nucl Chem 133:43–130

    Article  Google Scholar 

  20. Trkov A, Molnar GL, Revay Zs, Mughabghab SF, Firestone RB, Pronyaev VG, Nichols AL, Moxon MC (2005) Revisiting the \(^{238}\)U thermal capture cross section and gamma-ray emission probabilities from \(^{239}\)Np decay. Nucl Sci Eng (to be published)

  21. Shibata K et al (2011) JENDL-4.0: a new library for nuclear science and engineering. J Nucl Sci Technol 48:1–30

    Article  CAS  Google Scholar 

  22. Chadwick MB et al (2012) ENDF, B-VII.1 nuclear data for science and technology: cross sections, covariances, fission product yields and decay data. Nucl. Data Sheets 112:2887–2996

    Article  Google Scholar 

  23. Mughabghab S (2003) Thermal neutron capture cross sections, resonance integrals and \(g\)-factors. International Atomic Energy Agency, INDC(NDS)-440

  24. de Corte F, Simonits A (2003) Recommended nuclear data for use in \(k_0\) standardization of neutron activation analysis. Atom Data Nuclear Data Tables 85:47–67

    Article  Google Scholar 

Download references

Acknowledgments

This work was partly supported by the International Atomic Energy Agency (IAEA) through the Co-ordinated Research Project (CRP) on Reference Database for Neutron Activation Analysis.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vladimir Radulović.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Trkov, A., Radulović, V. Nuclear reactions and physical models for neutron activation analysis. J Radioanal Nucl Chem 304, 763–778 (2015). https://doi.org/10.1007/s10967-014-3892-5

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10967-014-3892-5

Keywords

Navigation