Skip to main content
Log in

Molecular hydrogen formation during water radiolysis in the presence of zirconium dioxide

  • Published:
Journal of Radioanalytical and Nuclear Chemistry Aims and scope Submit manuscript

Abstract

The presence of zirconium dioxide (ZrO2) greatly increases H2 yields in water radiolysis, an inevitable process which takes place in nuclear power plants. The aim of this review is to compile available knowledge about ZrO2 effect on H2 yields. The following parameters taken into consideration include: (i) LET of radiation, (ii) form of the adsorbed water, (iii) presence of oxygen, (iv) surface area, (v) crystalline structure, (vi) size of particles, (vii) doping with other oxides, (viii) grafting, and (ix) catalytic decomposition of H2O2.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Draganić IG (2005) Radiolysis of water: a look at its origin and occurrence in the nature. Radiat Phys Chem 72:181–186

    Article  Google Scholar 

  2. Roth O, Trummer M, Jonsson M (2009) Factors influencing the rate of radiation-induced dissolution of spent nuclear fuel. Res Chem Intermed 35:465–478

    Article  CAS  Google Scholar 

  3. Lefebvre F, Lemaignan C (1997) Irradiation effects on corrosion of zirconium alloy claddings. J Nucl Mater 248:268–274

    Article  CAS  Google Scholar 

  4. Lousada CM, Jonsson M (2010) Kinetics, mechanism, and activation energy of H2O2 decomposition on the surface of ZrO2. J Phys Chem C 114:11202–11208

    Article  CAS  Google Scholar 

  5. Garibov A (2005) Radiation-heterogenic processes of hydrogen accumulation in water-cooled nuclear reactors. Nukleonika 56:333–342

    Google Scholar 

  6. Le Caër S (2011) Water radiolysis: influence of oxide surfaces on H2 production under ionizing radiation. Water 3:235–253

    Article  Google Scholar 

  7. Jonsson M (2014) An overview of interfacial radiation chemistry in nuclear technology. Isr J Chem 54:292–301

    Article  CAS  Google Scholar 

  8. LaVerne JA (2010) Radiation chemistry of water with ceramic oxides. In: Hatano Y, Katsumura Y, Mozumder A (eds) Charged particle and photon interactions with matter: recent advances, applications and interfaces, 1st edn. CRC Press, Boca Raton

    Google Scholar 

  9. Zielinski A, Sobieszczyk S (2011) Hydrogen-enhanced degradation and oxide effects in zirconium alloys for nuclear applications. Int J Hydrog Energy 36:8619–8629

    Article  CAS  Google Scholar 

  10. Thiel PA, Madey TE (1987) The interaction of water with solid surfaces: fundamental aspects. Surf Sci Rep 7:211–385

    Article  CAS  Google Scholar 

  11. Petrik NG, Alexandrov AB, Vall AI (2001) Interfacial energy transfer during gamma radiolysis of water on the surface of ZrO2 and some other oxides. J Phys Chem B 105:5935–5944

    Article  CAS  Google Scholar 

  12. Essehli R, Crumière F, Blain G, Vandenborre J, Pottier F, Grambow B, Fattahi M, Mostafavi M (2011) H2 production by γ and He ions water radiolysis, effect of presence TiO2 nanoparticles. Int J Hydrogen Energy 36:14342–14348

  13. Caffrey JM, Allen AO (1958) Radiolysis of pentane adsorbed on mineral solids. J Phys Chem 62:33–37

    Article  CAS  Google Scholar 

  14. LaVerne JA, Tandon L (2002) H2 production in the radiolysis of water on CeO2 and ZrO2. J Phys Chem B 106:380–386

    Article  CAS  Google Scholar 

  15. LaVerne JA, Tandon L (2003) H2 production in the radiolysis of water on UO2 and other oxides. J Phys Chem B 107:13623–13628

    Article  CAS  Google Scholar 

  16. Roth O, Dahlgren B, LaVerne JA (2012) Radiolysis of water on ZrO2 nanoparticles. J Phys Chem C 116:17619–17624

    Article  CAS  Google Scholar 

  17. Henderson MA (2002) The interaction of water with solid surfaces: fundamental aspects revisited. Surf Sci Rep 46:1–308

    Article  CAS  Google Scholar 

  18. Carrasco-Flores EA, LaVerne JA (2007) Surface species produced in the radiolysis of zirconia nanoparticles. J Chem Phys 127:234703–234709

    Article  Google Scholar 

  19. LaVerne JA (2005) H2 formation from the radiolysis of liquid water with zirconia. J Phys Chem B Lett 109:5395–5397

    Article  CAS  Google Scholar 

  20. Alam M, Miserque F, Taguchi M, Boulanger L, Renault P (2009) Tuning hydrogen production during oxide irradiation through surface grafting. J Mater Chem 19:4261–4267

    Article  CAS  Google Scholar 

  21. Lousada CM, Johansson AJ, Brinck T, Jonsson M (2012) Mechanism of H2O2 decomposition on transition metal oxide surfaces. J Phys Chem C 116:9533–9543

    Article  CAS  Google Scholar 

  22. Lousada CM, LaVerne JA, Jonsson M (2013) Enhanced hydrogen formation during the catalytic decomposition of H2O2 on metal oxide surfaces in the presence of HO radical scavengers. Phys Chem Chem Phys 15:12674–12679

    Article  CAS  Google Scholar 

  23. Dimitrijevic NM, Henglein A, Meisel D (1999) Charge separation across the silica nanoparticle/water interface. J Phys Chem B 103:7073–7076

    Article  CAS  Google Scholar 

  24. Schatz T, Cook AR, Meisel D (1999) Capture of charge carriers at the silica nanoparticle-water interface. J Phys Chem B 103:10209–10213

    Article  CAS  Google Scholar 

  25. Meisel D (2004) Radiation effects in nanoparticle suspensions. In: Lin-Marzan L, Kamat P (eds) Nanoscale materials, 1st edn. Springer, Berlin

    Google Scholar 

  26. Cecal A, Goanta M, Palamaru M, Stoicescu T, Popa K, Paraschivescu A, Anita V (2001) Use of some oxides in radiolytical decomposition of water. Radiat Phys Chem 62:333–336

    Article  CAS  Google Scholar 

  27. Yamada R, Nagaishi R, Hatano Y, Yoshida Z (2008) Hydrogen production in the γ-radiolysis of aqueous sulfuric acid solutions containing Al2O3, SiO2, TiO2 or ZrO2 fine particles. Int J Hydrogen Energy 33:929–936

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Financial support under Research Task No. 7 “Study of hydrogen generation processes in nuclear reactors under regular operation conditions and in emergency cases, with suggested actions aimed at upgrade of nuclear safety” financed by the National Research and Development Centre in the framework of the Strategic Research Project entitled “Technologies Supporting Development of Safe Nuclear Power Engineering” is greatly acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Krzysztof Bobrowski.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Skotnicki, K., Bobrowski, K. Molecular hydrogen formation during water radiolysis in the presence of zirconium dioxide. J Radioanal Nucl Chem 304, 473–480 (2015). https://doi.org/10.1007/s10967-014-3856-9

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10967-014-3856-9

Keywords

Navigation