Skip to main content
Log in

Formation of semiquinone radical anion and free radical scavenging reactions of plumbagin: a pulse radiolysis study

  • Published:
Journal of Radioanalytical and Nuclear Chemistry Aims and scope Submit manuscript

Abstract

Kinetics and mechanism of scavenging of reducing free radicals by plumbagin (5-hydroxy-2-methyl-1,4-naphthoquinone) are studied using pulse radiolysis technique. It scavenged superoxide radical, hydroxyethyl radical and hydrated electron with bimolecular rate constants of 8.9 × 107, 2.3 × 109 and 1.6 × 1010 M−1 s−1, respectively in aqueous-alcohol medium. Plumbagin also scavenged linoleic acid peroxyl radical and tyrosyl radical with bimolecular rate constants of 1.0 × 108 and 7.0 × 106 M−1 s−1, respectively. Further, redox properties of plumbagin and its transients are studied using standard redox couples and cyclic voltammetry.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Lele RD (2001) Ayurveda and modern medicine. Bharatiya Vidya Bhavan, Mumbai

    Google Scholar 

  2. Thakur RS, Puri HS, Husain A (1989) Major medicinal plants of India. Central Institute of Medicinal and Aromatic Plants, Lucknow

    Google Scholar 

  3. Krishnaswamy M, Purushothaman KK (1980) Ind J Exp Biol 18:876–877

    CAS  Google Scholar 

  4. Datta S, Mishra RN (2012) Int J Pharm Biomed Res 3:250–267

    Google Scholar 

  5. Hafeez BB, Jamal MS, Fischer JW, Mustafa A, Verma AK (2012) Int J Cancer 131:2175–2186

    Article  CAS  Google Scholar 

  6. Lee JH, Yeon JH, Kim H, Roh W, Chae J, Park HO, Kim DM (2012) PLoS ONE 7:e45023

    Article  CAS  Google Scholar 

  7. Padhye S, Dandawate P, Yusufi M, Ahmad A, Sarkar FH (2012) Med Res Rev 32:1131–1158

    Article  CAS  Google Scholar 

  8. Seshadri P, Rajaram A, Rajaram R (2011) Free Radical Biol Med 51:2090–2107

    Article  CAS  Google Scholar 

  9. Tilak JC, Adhikari S, Devasagayam TP (2004) Redox Rep 9:219–227

    Article  CAS  Google Scholar 

  10. Sreekanth R, Menachery SPM, Aravind UK, Marignier J-L, Belloni J, Aravindakumar CT (2014) Int J Radiat Biol 90(6):495–502

    Article  CAS  Google Scholar 

  11. Tan M, Liu Y, Luo X, Chen Z, Liang H (2011) Bioinorg Chem Appl Article No. 898726

  12. Kumar S, Gautam S, Sharma A (2013) Mutat Res—Genet Tox En 755:30–41

    Article  CAS  Google Scholar 

  13. Li W-W, Heinze J, Haehnel W (2005) J Am Chem Soc 127:6140–6141

    Article  CAS  Google Scholar 

  14. Nazeem S, Azmi AS, Hanif S, Ahmad A, Mohammad RM, Hadi SM, Kumar KS (2009) Mutagenesis 24:413–418

    Article  CAS  Google Scholar 

  15. Shimada H, Yamaoka Y, Morita R, Mizuno T, Gotoh K, Higuchi T, Shiraishi T, Imamura Y (2012) Toxicol In Vitro 26:252–257

    Article  CAS  Google Scholar 

  16. Checker R, Sharma D, Sandur SK, Subrahmanyam G, Krishnan S, Poduval TB, Sainis KB (2010) J Cell Biochem 110:1082–1093

    Article  CAS  Google Scholar 

  17. Chen Z-F, Tan MX, Liu LM, Liu YC, Wang HS, Yang B, Peng Y, Liu HG, Liang H, Orvig C (2009) Dalton Trans 28:10824–10833

    Article  Google Scholar 

  18. Chen Z-F, Tan M-X, Liu Y-C, Peng Y, Wang H-H, Liu H-G, Liang H (2011) J Inorg Biochem 105:426–434

    Article  CAS  Google Scholar 

  19. Hernandez-Munoz LS, Gomez M, Gonzalez FJ, Gonzalez I, Frontana C (2009) Org Biomol Chem 7:1896–1903

    Article  CAS  Google Scholar 

  20. Damle MS, Newton LAA, Villalba MM, Leslie R, Davis J (2010) Electroanalysis 22:2491–2495

    Article  CAS  Google Scholar 

  21. Newton LAA, Cowham E, Sharp D, Leslie R, Davis J (2010) New J Chem 34:395–397

    Article  CAS  Google Scholar 

  22. Al-Khadem MS (1982) Anthracycline Antibiotics. Academic Press, New York

    Google Scholar 

  23. Maroz A, Anderson RF, Smith RAJ, Murphy MP (2009) Free Radical Biol Med 46:105–109

    Article  CAS  Google Scholar 

  24. Bielski BHJ, Cabelli DE, Arudi RL (1985) J Phys Chem Ref Data 14:1041–1100

    Article  CAS  Google Scholar 

  25. Mukherjee T (2001) In: Jonah CD, Madhavarao BS (eds) Radiation chemistry: present status and future trends. Elsevier, Amsterdam

    Google Scholar 

  26. Song Y, Buettner GR (2010) Free Radical Biol Med 49:919–962

    Article  CAS  Google Scholar 

  27. Goldstein S (2011) J Phys Chem A 115:8928–8932

    Article  CAS  Google Scholar 

  28. Sutton HC, Sangster DF (1982) J Chem Soc Faraday Trans I 78:695–711

    Article  CAS  Google Scholar 

  29. Land EJ, Swallow AJ (1970) J Biol Chem 245:1890–1894

    CAS  Google Scholar 

  30. Land EJ, Mukherjee T, Swallow AJ, Bruce JM (1983) J Chem Soc Faraday Trans I 79:391–404

    Article  CAS  Google Scholar 

  31. Khan NM, Sandur SK, Checker R, Sharma D, Poduval TB, Sainis KB (2011) Free Radical Biol Med 51:115–128

    Article  CAS  Google Scholar 

  32. Guha SN, Moorthy PN, Kishore K, Naik DB, Rao KN (1987) Proc Ind Acad Sci (Chem Sci) 99:261–271

    CAS  Google Scholar 

  33. Buxton GV, Stuart CR (1995) J Chem Soc Faraday Trans 91:279–281

    Article  CAS  Google Scholar 

  34. Patel KB, Wilson RL (1973) J Chem Soc Faraday Trans I 69:814–825

    Article  Google Scholar 

  35. Rath MC, Mukherjee T (1997) Radiat Phys Chem 49:29–33

    Article  CAS  Google Scholar 

  36. Koppenol WH, Stanbury DM, Bounds PL (2010) Free Radical Biol Med 49:317–322

    Article  CAS  Google Scholar 

  37. Ebbesen TW, Levey G, Patterson LK (1982) Nature 298:545–547

    Article  CAS  Google Scholar 

  38. Scott SL, Chen W-J, Bakac A, Espenson JH (1993) J Phys Chem 97:6710–6714

    Article  CAS  Google Scholar 

  39. Solar S, Solar W, Getoff N (1984) J Phys Chem 88:2091–2095

    Article  CAS  Google Scholar 

  40. Wardman P (1989) J Phys Chem Ref Data 18:1637–1755

    Article  CAS  Google Scholar 

  41. Schwarz HA, Dodson RW (1989) J Phys Chem 93:409–414

    Article  CAS  Google Scholar 

  42. Koppenol WH (1990) FEBS Lett 264:165–167

    Article  CAS  Google Scholar 

  43. Harriman A (1987) J Phys Chem 91: 6102–6104

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Authors wish to thank Dr. Shilpa Tawade for the assistance with cyclic voltammetric measurements. We also thank the reviewers for some useful changes in the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ravi Joshi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Joshi, R., Gangabhagirathi, R. Formation of semiquinone radical anion and free radical scavenging reactions of plumbagin: a pulse radiolysis study. J Radioanal Nucl Chem 303, 919–924 (2015). https://doi.org/10.1007/s10967-014-3501-7

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10967-014-3501-7

Keywords

Navigation