Skip to main content
Log in

Magnetic nanoparticle-conjugated and radioiodinated-DESG: in vitro and in vivo efficiency investigation

  • Published:
Journal of Radioanalytical and Nuclear Chemistry Aims and scope Submit manuscript

Abstract

The purpose of this work is to combine magnetite nanoparticles with radioiodinated diethylstilbestrol-glucuronide (DESG) to get a prostate cancer agent. Magnetically targeted drug delivery by particulate carriers is an efficient method of delivering drugs to localized and targeted disease sites, such as tumors. Estrogen glucuronide derivative; DESG was synthesized which is specific for beta glucuronidase enzyme consisting tumor cells and conjugated with iron oxide nanoparticles (NP) and radioiodinated with 125/131I to evaluate in vitro/in vivo radiopharmaceutical potential of NP conjugated DESG (NP-DESG) and magnetic field applied NP-DESG (MNP-DESG). According to cell culture studies, incorporation ratios of MNP-DESG were higher in MCF7 cells than A549 and Caco2 cells. Biodistribution experiments were verified that the range of the breast/blood and breast/muscle ratios was approximately between 1.82 and 10.10 in 240 min for ER unsaturated studies. The results are promising for targeted therapy of both estrogen receptor and enzyme β-glucuronidase rich cancers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Miyamoto H, Messing EM, Chang C (2004) Androgen deprivation therapy for prostate cancer: current status and future prospects. Prostate 61:332–353

    Article  CAS  Google Scholar 

  2. Saeed M, Rogan E, Cavalieri E (2009) Mechanism of metabolic activation and DNA adduct formation by the human carcinogen diethylstilbestrol: the defining link to natural estrogens. Int J Cancer 124:1276–1284

    Article  CAS  Google Scholar 

  3. Ertay T, Ünak P, Özdogan O, Biber FZ (2006) 99mTc-exorphin-glucuronide in tumor diagnosis: preparation and biodistribution studies in rats. J Radioanal Nucl Chem 269:21–28

    Article  CAS  Google Scholar 

  4. Biber FZ, Unak P, Ertay T, Medine EI, Zihnioglu F, Tascı C, Durak H (2006) Synthesis of an estradiol glucuronide derivative and investigation of its radiopharmaceutical potential. Appl Radiat Isot 64:778–788

    Article  CAS  Google Scholar 

  5. Medine IE, Unak P, Sakarya S, Toksöz F (2010) Enzymatic synthesis of uracil glucuronide, labeling with 125/131I, and in vitro evaluation on adenocarcinoma cells. Cancer Biother Radiopharm 25:335–344

    Article  CAS  Google Scholar 

  6. Shoda T, Fukuhara K, Goda Y, Okuda H (2009) 4-Hydroxy-3-methoxymethamphetamine glucuronide as a phase II metabolite of 3,4-methylenedioxymethamphetamine: enzyme-assisted synthesis and involvement of human hepatic uridine 5′-diphosphate-glucuronosyltransferase 2B15 in the glucuronidation. Chem Pharm Bull (Tokyo) 57:472–475

    Article  CAS  Google Scholar 

  7. Jäntti SE, Kiriazis A, Reinilä RR, Kostiainen RK, Ketola RA (2007) Enzyme-assisted synthesis and characterization of glucuronide conjugates of neuroactive steroids. Steroids 72:287–296

    Article  Google Scholar 

  8. Glucuronides from metabolites to medicines: a survey of the in vivo generation, chemical synthesis and properties of glucuronides. http://pubs.rsc.org/en/content/articlepdf/2013/NP/C3NP70003H. Accessed 21 Mar 2014

  9. Häfeli U, Pauer G, Failing S, Tapolsky G (2001) Radiolabeling of magnetic particles with rhenium-188 for cancer therapy. J Magn Magn Mater 225:73–78

    Article  Google Scholar 

  10. Häfeli UO (2004) Magnetically modulated therapeutic systems. Int J Pharm 277:19–24

    Article  Google Scholar 

  11. Liang S, Wang Y, Yu J, Zhang C, Xia J, Yin D (2007) Surface modified superparamagnetic iron oxide nanoparticles: as a new carrier for bio-magnetically targeted therapy. J Mater Sci Mater Med 18:2297–2302

    Article  CAS  Google Scholar 

  12. Ramanujan RV, Chong WT (2004) The synthesis and characterization of polymer coated iron oxide microspheres. J Mater Sci Mater Med 15:901–908

    Article  CAS  Google Scholar 

  13. Häfeli UO, Yu J, Farudi F, Li Y, Tapolsky G (2003) Radiolabeling of magnetic targeted carriers (MTC) with indium-111. Nucl Med Biol 30:761–769

    Article  Google Scholar 

  14. Wunderlich G, Drews A, Kotzerke J (2005) A kit for labeling of [188Re] human serum albumin microspheres for therapeutic use in nuclear medicine. Appl Radiat Isot 62:915–918

    Article  CAS  Google Scholar 

  15. Felinto MCFC, Parra DF, Lugão AB, Batista MP, Higa OZ, Yamaura M, Camilo RL, Ribela MTCP, Sampaio LC (2005) Magnetic polymeric microspheres for protein adsorption. Nucl Instruments Methods Phys Res Sect B Beam Interact Mater Atoms 236:495–500

    Article  CAS  Google Scholar 

  16. Dagdeviren K, Ünak P, Bekis R, Biber FZ, Akdurak S, Ulker O, Ergur B, Ertay T, Durak H (2007) Radioiodinated magnetic targeted carriers (131I-MTC). J Radioanal Nucl Chem 273:635–639

    Article  CAS  Google Scholar 

  17. Yilmaz T, Unak P, Muftuler FZB, Medine EI, Sakarya S, Ichedef CA, Unak T (2012) Diethylstilbestrol glucuronide (DESG): synthesis, labeling with radioiodine and in vivo/in vitro evaluations. J Radioanal Nucl Chem 295:1395–1404

    Article  Google Scholar 

  18. Toniti W, Suthiyotha N, Puchadapirom P, Jenwitheesuk E (2011) Binding capacity of ER-α ligands and SERMs: comparison of the human, dog and cat. Asian Pac J Cancer Prev 12:2875–2879

    Google Scholar 

  19. Ünak T, Avcibasi U, Yildirim Y, Çetinkaya B (2003) Attempts to develop a new nuclear measurement technique of β-glucuronidase levels in biological samples. Czechoslov J Phys 53:A797–A802

    Article  Google Scholar 

  20. Melo e Silva MC, Patrício L, Gano L, Melo MLS, Inohae E, Mataka S, Thirmann T (2001) Synthesis and biological evaluation of two new radiolabelled estrogens: [125I](E)-3-methoxy-17α-iodovinylestra-1,3,5(10),6-tetraen-17β-ol and [125I](Z)-3-methoxy-17α-iodovinylestra-1,3,5(10),6-tetraen-17β-ol. Appl Radiat Isot 54:227–239

    Article  CAS  Google Scholar 

  21. Ünak P, Biber Müftüler FZ, İçhedef Ç, Medine EI, Özmen K, Ünak T, Yurt Kılçar A, Gümüşer FG, Parlak Y, Sayıt Bilgin E (2012) Synthesis, radiolabeling and in vivo biodistribution of diethylstilbestrol phosphate derivative (DES-P). J Radioanal Nucl Chem 293:57–66

    Article  Google Scholar 

Download references

Acknowledgments

Authors thank to Ege University Scientific Research Fund with the Project Number 2009 NBE001 for the financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Perihan Unak.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yılmaz, T., Unak, P., Muftuler, F.Z.B. et al. Magnetic nanoparticle-conjugated and radioiodinated-DESG: in vitro and in vivo efficiency investigation. J Radioanal Nucl Chem 303, 63–69 (2015). https://doi.org/10.1007/s10967-014-3329-1

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10967-014-3329-1

Keywords

Navigation