Skip to main content
Log in

Size fractionated complexation of Tc(IV) with soil humic acids at varying solution conditions

  • Published:
Journal of Radioanalytical and Nuclear Chemistry Aims and scope Submit manuscript

Abstract

There are currently multiple U.S. Department of Energy sites with significant quantities of technetium-99 stored under a variety of conditions. While it is known that Tc in the VII oxidation state has a very high rate of environmental migration, little is known about the chemistry of the IV oxidation state, expected to occur under anoxic conditions. In this work, the binding of Tc(IV) with humic acid (HA) of varying sizes was studied using ultracentrifugation and total organic carbon analysis. A constant ratio HA-bound Tc(IV):HA concentration was observed for the 10–1,000 nm HA size range and it is independent of pH, ionic strength, background electrolyte and HA origin. HA zeta potentials were determined; the largest HA size fraction had a considerably less negative zeta potential than the smaller size fractions; the zeta potential of the colloidal size fraction (10–1,000 nm) was independent of solution conditions. 13C cross polarization magic angle spinning and attenuated total reflectance-Fourier transform infrared spectroscopy results indicate that solid filtrates of HA from two different origins have distinct spectra that were not altered with changes in solution conditions. This work shows that we are able to use zeta potential measurements to describe binding characteristics of HA with Tc(IV).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Abbreviations

ATR-FTIR:

Attenuated total reflectance Fourier transform infrared spectroscopy

BGE:

Background electrolyte

Ci:

Curies

CPMAS:

Cross polarization magic angle spinning

ESHA:

Elliot soil humic acid

HA:

Humic acid

LSC:

Liquid scintillation counting

NMR:

Nuclear magnetic resonance spectroscopy

SAHA:

Sigma Aldrich humic acid

Tc:

Technetium

TOC:

Total organic carbon

η :

Solution viscosity

U :

Mobility of a particle

ε :

Dielectric constant

D :

Particle diameter

ω :

Angular velocity of centrifuge rotor

ρ :

Density

R max / min :

Maximum and minimum distances of centrifuge vials from center of rotation during centrifugation

References

  1. Fredrickson JK, Zachara JM, Kennedy DW, Kukkadapu RK, McKinley JP, Heald SM, Liu CX, Plymale AE (2004) Reduction of TcO4-by sediment-associated biogenic Fe(II). Geochim Cosmochim Acta 68(15):3171–3187

    Article  CAS  Google Scholar 

  2. Watson DB, Kostka JE, Fields NW, Jardine PM (2004) The Oak Ridge Field Research Center conceptual mode. In NIBAR. Field Research Center Oak Ridge, Tennessee

  3. Kincaid CT, Eslinger PW, Aaberg RL, Miley TB, Nelson IC, Strenge DL, Evans J, Evans JC (2006) Inventory data package for hanford assessments. Richland

  4. Schroeder NC, Radzinski SD, Ashley KR, Truong AP, Whitener GD (2001) Feed adjustment chemistry for Hanford 101-SY and 103-SY tank waste: attempts to oxidize the non-pertechnetate species. J Radioanal Nucl Chem 250(2):271–284

    Article  CAS  Google Scholar 

  5. Lukens W, Shuh D, Schroeder N, Ashley K (2003) Behavior of technetium in alkaline solution: identification of nonpertechnetate species in Hanford waste tanks. Abstr Pap Am Chem Soc 226:U90

    Google Scholar 

  6. Bernard JG, Bauer E, Richards MP, Arterburn JB, Chamberlin RM (2001) Catalytic reduction of pertechnetate ((TcO4-)-Tc-99) in simulated alkaline nuclear wastes. Radiochim Acta 89(1):59–61

    CAS  Google Scholar 

  7. Wildung RE, Li SW, Murray CJ, Krupka KM, Xie Y, Hess NJ, Roden EE (2004) Technetium reduction in sediments of a shallow aquifer exhibiting dissimilatory iron reduction potential. FEMS Microbiol Ecol 49(1):151–162

    Article  CAS  Google Scholar 

  8. Plymale A, Fredrickson J, Zachara J, Kennedy D, Kukkadapu R, Dohnalkova A (2005) Biogeochemical redox transformations of technetium-99 in Hanford and Oak Ridge sediments. Geochim Cosmochim Acta 69(10):A801

    Article  Google Scholar 

  9. Xia YX, Hess NJ, Felmy AR (2006) Stability constants of technetium(IV) oxalate complexes as a function of ionic strength. Radiochim Acta 94(3):137–141

    CAS  Google Scholar 

  10. Hess NJ, Qafoku O, Xia YX, Moore DA, Felmy AR (2008) Thermodynamic model for the solubility of TcO2.xH(2)O in aqueous oxalate systems. J Solut Chem 37(11):1471–1487

    Article  CAS  Google Scholar 

  11. Boggs MA, Dong W, Gu B, Wall NA (2010) Complexation of Tc(IV) with acetate at varying ionic strength. Radiochim Acta 98:583–587

    Article  CAS  Google Scholar 

  12. Boggs MA, Islam MR, Dong W, Wall N (2011) Complexation of Tc(IV) with EDTA at varying ionic strength of NaCl. Radiochimica Acta 101:13–18

    Article  Google Scholar 

  13. Boggs MA, Minton T, Dong W, Lomasney S, Islam MR, Gu B, Wall NA (2011) Interactions of Tc(IV) with humic substances. Environ Sci Technol 45(7):2718–2724

    Article  CAS  Google Scholar 

  14. Gu B, Dong W, Liang L, Wall NA (2011) Dissolution of technetium(IV) oxide by natural and synthetic organic ligands under both reducing and oxidizing conditions. Environ Sci Technol 45(11):4771–4777

    Article  CAS  Google Scholar 

  15. Maes A, Geraedts K, Bruggeman C, Vancluysen J, Rossberg A, Hennig C (2004) Evidence for the interaction of technetium colloids with humic substances by X-ray absorption spectroscopy. Environ Sci Technol 38(7):2044–2051

    Article  CAS  Google Scholar 

  16. Wall NA, Borkowski M, Chen JF, Choppin GR (2002) Complexation of americium with humic, fulvic and citric acids at high ionic strength. Radiochim Acta 90(9–11):563–568

    CAS  Google Scholar 

  17. Artinger R, Rabung T, Kim JI, Sachs S, Schmeide K, Heise KH, Bernhard G, Nitsche H (2002) Humic colloid-borne migration of uranium in sand columns. J Contam Hydrol 58(1–2):1–12

    Article  CAS  Google Scholar 

  18. Walensky J, Kersting A, Zavarin M, Roberts S, Johnson M, Zhao PH, Ramon E (2005) Role of colloids and mineralogy in the transport of Pu, Np and Sm at the Nevada Test Site. Abstr Pap Am Chem Soc 229:U306–U307

    Google Scholar 

  19. Malkovsky VI, Pek AA (2009) Effect of colloids on transfer of radionuclides by subsurface water. Geol Ore Depos 51(2):79–92

    Article  Google Scholar 

  20. Zavarin M, Maxwell RM, Kersting A (2004) Radionuclide migration at the Nevada test site—evaluating mechanisms controlling colloid-facilitated transport. Abstr Pap Am Chem Soc 227:U1113–U1114

    Google Scholar 

  21. Santschi PH, Roberts KA, Guo LD (2002) Organic mature of colloidal actinides transported in surface water environments. Environ Sci Technol 36(17):3711–3719

    Article  CAS  Google Scholar 

  22. Labonne-Wall N, Choppin GR, Lopez C, Monsallier J-M (1999) Interaction of actinides with humic and fulvic acids at high ionic strengths. In: Reed DT, Clark SB, Rao L (eds) Actinides speciation in high ionic strength media. Kluwer Academic/Plenum, New York, pp 199–211

    Chapter  Google Scholar 

  23. Scott DJ, Harding SE, Rowe AJ (2006) Analytical ultracentrifugation: techniques and methods. The Royal Society of Chemistry, Dorset

    Google Scholar 

  24. Simeonova Z (1996) Extraction of rhenium(IV) and rhenium(VII) with iodonitrotetrazoleum chloride. Anal Lab 5(4):260–262

    CAS  Google Scholar 

  25. Boggs MA, Gribat LC, Boele CA, Wall NA (2012) Rapid separation of IV/VII technetium oxidation states by solvent extraction with iodonitrotetrazolium chloride. J Radioanal Nucl Chem 293(3):843–846

    Article  CAS  Google Scholar 

  26. Giese K, Kaatze U, Pottel R (1970) Permittivity and dielectric and proton magnetic relaxation of aqueous solutions of the alkali halides. J Phys Chem 74(21):3718–3725

    Article  CAS  Google Scholar 

  27. Wall NA, Choppin GR (2003) Humic acids coagulation: influence of divalent cations. Appl Geochem 18(10):1573–1582

    Article  CAS  Google Scholar 

  28. Tombacz E, Meleg E (1990) A theoretical explanation of the aggregation of humic substances as a function of pH and electrolyte concentration. Org Geochem 15(4):375–381

    Article  CAS  Google Scholar 

  29. Alvarez-Puebla RA, Garrido JJ (2005) Effect of pH on the aggregation of a gray humic acid in colloidal and solid states. Chemosphere 59(5):659–667

    Article  CAS  Google Scholar 

  30. Xu R (2000) Particle characterization: light scattering methods. Kluwer, Netherlands

    Google Scholar 

  31. Brigante M, Zanini G, Avena M (2009) Effect of pH, anions and cations on the dissolution kinetics of humic acid particles. Colloids Surf Physicochem Eng Aspects 347(1–3):180–186

    Article  CAS  Google Scholar 

  32. Choppin GR, LabonneWall N (1997) Comparison of two models for metal-humic interactions. J Radioanal Nucl Chem 221(1–2):67–71

    Article  CAS  Google Scholar 

  33. Shin HS, Monsallier JM, Choppin GR (1999) Spectroscopic and chemical characterizations of molecular size fractionated humic acid. Talanta 50(3):641–647

    Article  CAS  Google Scholar 

  34. Kim JI, Buckau G, Li GH, Duschner H, Psarros N (1990) Characterization of humic and fulvic acids from Gorleben groundwater. Fresenius J Anal Chem 338(3):245–252

    Article  CAS  Google Scholar 

  35. Maes A, Bruggeman C, Geraedts K, Vancluysen J (2003) Quantification of the interaction of Tc with dissolved boom clay humic substances. Environ Sci Technol 37(4):747–753

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the Office of the Biological and Environmental Research, Office of Science, U.S. Department of Energy (DOE) under the Grant DE-FG02-08ER64696 with Washington State University and by the U.S. Nuclear Regulatory Commission under the Grant 3808953. The authors would also like to thank the NMR Center at Washington State University for their help with CPMAS NMR work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nathalie A. Wall.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Boggs, M.A., Nulle, S.E. & Wall, N.A. Size fractionated complexation of Tc(IV) with soil humic acids at varying solution conditions. J Radioanal Nucl Chem 303, 541–549 (2015). https://doi.org/10.1007/s10967-014-3325-5

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10967-014-3325-5

Keywords

Navigation