Skip to main content
Log in

Reversible complexation mediated polymerization (RCMP) starting with a complex of iodine with organic salt and thermal initiators

  • Original Paper
  • Published:
Journal of Polymer Research Aims and scope Submit manuscript

Abstract

Herein, we developed a reversible complexation mediated polymerization (RCMP) starting with a complex of iodine and organic salt as a deactivator and a thermal initiator for continuous regeneration of the organic salt activator. This novel polymerization method can be called as initiators for continuous activator regeneration (ICAR) RCMP, as inspired by the denomination of ICAR ATRP. The synthesis of poly (methyl methacrylate) (PMMA) (Mw/Mn < 1.3) with good controllability was achieved via this technique when the concentration of the deactivator complex was as low as dozens of ppm. The studied three kinds of iodine complexes showed high control on the polymerization of MMA. The effects of initiator and deactivator complex concentration on the polymerization process were researched in detail. Furthermore, the accessibility of PMMA prepared by ICAR RCMP to chain extension and block copolymerization confirmed that this novel polymerization approach afforded polymers with high chain-end fidelity. The substantial decrease in the concentration of deactivator complex or activator plays a critical role for the production and application of well-defined polymer prepared by this method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Data Availability

We declare that these data are real and available.

References

  1. Jenkins AD, Jones RG, Moad G (2009) Terminology for reversible-deactivation radical polymerization previously called “controlled” radical or “living” radical polymerization (IUPAC Recommendations 2010). Pure Appl Chem 82:483–491. https://doi.org/10.1351/PAC-REP-08-04-03

    Article  CAS  Google Scholar 

  2. Zetterlund PB, Kagawa Y, Okubo M (2008) Molecular addition compounds of amines and iodine. Evidence for the existence of a 2:1 triethylamine-iodine complex. Chem Rev 108:3747–3794. https://doi.org/10.1021/cr800242x

    Article  CAS  PubMed  Google Scholar 

  3. Wienhöfer IC, Luftmann H, Studer A (2011) Nitroxide-mediated copolymerization of MMA with styrene: Sequence analysis of oligomers by using mass spectrometry. Macromolecules 44:2510–2523. https://doi.org/10.1021/ma1029482

    Article  CAS  Google Scholar 

  4. Nicolas J, Guillaneuf Y, Lefay C et al (2013) 3.10 - Nitroxide-mediated polymerization. Prog Polym Sci 38:63–235. https://doi.org/10.1016/B978-0-444-53349-4.00069-8

    Article  CAS  Google Scholar 

  5. Matyjaszewsk K (2012) Atom Transfer Radical Polymerization (ATRP): current status and future perspectives. Macromolecules 45:4015–4039. https://doi.org/10.1021/ma3001719

    Article  CAS  Google Scholar 

  6. Matyjaszewski K, Xia JH (2001) Metal-catalyzed living radical polymerization. Chem Rev 101:356–365. https://doi.org/10.1021/cr9901182

    Article  CAS  Google Scholar 

  7. Rizzardo E, Chiefari J, Mayadunne R et al (2000) synthesis of defined polymers by reversible addition—fragmentation chain transfer: The RAFT process. ACS Sym Ser 768:278–296. https://doi.org/10.1021/bk-2000-0768.ch020

    Article  CAS  Google Scholar 

  8. Chiefari J, Chong YK, Ercole F et al (1998) living free-radical polymerization by reversible addition−fragmentation chain transfer: The RAFT process. Macromolecules 31:5559–5562. https://doi.org/10.1021/ma9804951

    Article  CAS  Google Scholar 

  9. Matyjaszewski K, Gaynor SG, Wang JS (1995) Controlled radical polymerizations: The use of alkyl iodides in degenerative transfer. Macromolecules 28:2093–2095. https://doi.org/10.1021/ma00110a050

    Article  CAS  Google Scholar 

  10. David G, Boyer C, Tonnar J et al (2006) Use of iodocompounds in radical polymerization. Chem Rev 106:3936–3962. https://doi.org/10.1021/cr0509612

    Article  CAS  PubMed  Google Scholar 

  11. Lacroix-Desmazes P, Tonnar J (2012) degenerative transfer with alkyl iodide. Polym Sci: Compr Ref 3:159–180. https://doi.org/10.1016/B978-0-444-53349-4.00065-0

    Article  CAS  Google Scholar 

  12. Goto A, Zushi H, Hirai N et al (2007) Living radical polymerizations with germanium, tin, and phosphorus catalysts − reversible chain transfer catalyzed polymerizations (RTCPs). J Am Chem Soc 129:13347–13354. https://doi.org/10.1021/ja0755820

    Article  CAS  PubMed  Google Scholar 

  13. Goto A, Zushi H, Hirai N et al (2007) germanium- and tin-catalyzed living radical polymerizations of styrene and methacrylates. Macromol Symp 248:126–131. https://doi.org/10.1002/masy.200750213

    Article  CAS  Google Scholar 

  14. Goto A, Hirai N, Tsujii Y et al (2008) Reversible chain transfer catalyzed polymerizations (RTCPs) of styrene and methyl methacrylate with phosphorus catalysts. Macromol Symp 261:18–22. https://doi.org/10.1002/masy.200850103

    Article  CAS  Google Scholar 

  15. Bai LJ, Zhang LF, Liu Y et al (2013) Triphenylphosphine as phosphorus catalyst for reversible chain-transfer catalyzed polymerization (RTCP). Polym Chem 4:3069–3076. https://doi.org/10.1039/C3PY00187C

    Article  CAS  Google Scholar 

  16. Goto A, Hirai N, Wakada T et al (2008) Living radical polymerization with nitrogen catalyst: reversible chain transfer catalyzed polymerization with N-iodosuccinimide. Macromolecules 41:6261–6264. https://doi.org/10.1021/ma801323u

    Article  CAS  Google Scholar 

  17. Yorizane M, Nagasuga T, Kitayama Y et al (2010) Reversible Chain Transfer Catalyzed Polymerization (RTCP) of methyl methacrylate with nitrogen catalyst in an aqueous microsuspension system. Macromolecules 43:8703–8705. https://doi.org/10.1021/ma101918p

    Article  CAS  Google Scholar 

  18. Kim J, Nomura A, Fukuda T et al (2010) Use of alcohol as initiator for reversible chain transfer catalyzed polymerization. Macromol React Eng 4:272–277. https://doi.org/10.1002/mren.200900051

    Article  CAS  Google Scholar 

  19. Goto A, Hirai N, Wakada T et al (2009) Reversible Chain Transfer Catalyzed Polymerization (RTCP) with alcohol catalysts. Acs Sym Ser 1023:159–168. https://doi.org/10.1021/bk-2009-1023.ch011

    Article  CAS  Google Scholar 

  20. Goto A, Hirai N, Nagasawa K et al (2010) Phenols and carbon compounds as efficient organic catalysts for reversible chain transfer catalyzed living radical polymerization (RTCP). Macromolecules 43:7971–7978. https://doi.org/10.1021/ma101323r

    Article  CAS  Google Scholar 

  21. Lacroix-Desmazes P, Severac R, Boutevin B (2005) Reverse iodine transfer polymerization of methyl acrylate and n-butyl acrylate. Macromolecules 38:6299–6309. https://doi.org/10.1021/ma050056j

    Article  CAS  Google Scholar 

  22. Boyer C, Lacroix-Desmazes P, Robin J et al (2006) Reverse Iodine Transfer Polymerization (RITP) of methyl methacrylate. Macromolecules 39:4044–4053. https://doi.org/10.1021/ma052358r

    Article  CAS  Google Scholar 

  23. Goto A, Suzuki T, Ohfuji H et al (2011) Reversible Complexation Mediated Living Radical Polymerization (RCMP) using organic catalysts. Macromolecules 44:8709–8715. https://doi.org/10.1021/ma2014589

    Article  CAS  Google Scholar 

  24. Ohtsuki A, Goto A, Kaji H (2013) Visible-light-induced reversible complexation mediated living radical polymerization of methacrylates with organic catalysts. Macromolecules 46:96–102. https://doi.org/10.1021/ma302244j

    Article  CAS  Google Scholar 

  25. Lei L, Tanishima M, Goto A et al (2014) Living radical polymerization via organic superbase catalysis. Polymers 6:860–872. https://doi.org/10.3390/polym6030860

    Article  CAS  Google Scholar 

  26. Goto A, Ohtsuki A, Ohfuji H et al (2013) Reversible generation of a carbon-centered radical from alkyl iodide using organic salts and their application as organic catalysts in living radical polymerization. J Am Chem Soc 135:11131–11139. https://doi.org/10.1021/ja4036016

    Article  CAS  PubMed  Google Scholar 

  27. Ohtsuki A, Lei L, Tanishima M et al (2015) Photocontrolled organocatalyzed living radical polymerization feasible over a wide range of wavelengths. J Am Chem Soc 137:5610–5617. https://doi.org/10.1021/jacs.5b02617

    Article  CAS  PubMed  Google Scholar 

  28. Lei L, Tanishima M, Goto A et al (2014) Systematic study on alkyl iodide initiators in living radical polymerization with organic catalysts. Macromolecules 47:6610–6618. https://doi.org/10.1021/ma501569j

    Article  CAS  Google Scholar 

  29. Wang YA, Shi Y, Fu ZF et al (2017) Hexamethylphosphoramide as a highly reactive catalyst for the reversible-deactivation radical polymerization of MMA with an in situ formed alkyl iodide initiator. Polym Chem 8:6073–6085. https://doi.org/10.1039/C7PY01186E

    Article  CAS  Google Scholar 

  30. Wang YA, Zhang XT, Shi Y et al (2018) Reversible addition-fragmentation chain transfer of methyl methacrylate under the control of carbodiimide. Acta Polym Sin 9:1–10. https://doi.org/10.11777/j.issn1000-3304.2018.18046

    Article  CAS  Google Scholar 

  31. Wang JS, Matyjaszewski K (1995) Living controlled radical polymerization - transition-metal-catalyzed atom-transfer radical polymerization in the presence of a conventional radical initiator. Macromolecules 28:7572–7573. https://doi.org/10.1021/ma00126a041

    Article  CAS  Google Scholar 

  32. Lena FD, Matyjaszewski K (2010) Transition metal catalysts for controlled radical polymerization. Prog Polym Sc 35:959–1021. https://doi.org/10.1016/j.progpolymsci.2010.05.001

    Article  CAS  Google Scholar 

  33. Lutz JF, Lacroix-Desmazes P, Boutevin B (2001) The persistent radical effect in nitroxide mediated polymerization: experimental validity. Macromol Rapid Comm 22:189–193. https://doi.org/10.1002/1521-3927(200102)22:3%3C189::AID-MARC189%3E3.0.CO;2-X

    Article  CAS  Google Scholar 

  34. Sarkar J, Xiao LQ, Goto A (2016) Living radical polymerization with alkali and alkaline earth metal iodides as catalysts. Macromolecules 49:5033–5042. https://doi.org/10.1021/acs.macromol.6b00974

    Article  CAS  Google Scholar 

  35. Sarkar J, Xiao LQ, Jackson AW et al (2018) Synthesis of transition-metal-free and sulfur-free nanoparticles and nanocapsules via reversible complexation mediated polymerization (RCMP) and polymerization induced self-assembly (PISA). Polym Chem 9:4900–4907. https://doi.org/10.1039/C8PY01117F

    Article  CAS  Google Scholar 

  36. Wang CG, Chang JJ, Foo EYJ et al (2020) Recyclable solid-supported catalysts for quaternary ammonium iodide-catalyzed living radical polymerization. Macromolecules 53:51–58. https://doi.org/10.1021/acs.macromol.9b02266

    Article  CAS  Google Scholar 

  37. Wang CG, Oh XY, Liu X et al (2019) Self-catalyzed living radical polymerization using quaternary-ammonium-iodide-containing monomers. Macromolecules 52:2712–2718. https://doi.org/10.1021/acs.macromol.9b00137

    Article  CAS  Google Scholar 

  38. Xu QH, Tian C, Zhang LF et al (2018) Photo-Controlled Polymerization-Induced Self-Assembly (Photo-PISA): a novel strategy using in situ bromine-iodine transformation living radical polymerization. Macromol Rapid Comm 40:1800327. https://doi.org/10.1002/marc.201800327

    Article  CAS  Google Scholar 

  39. Wang CG, Goto A (2017) Solvent-selective reactions of alkyl iodide with sodium azide for radical generation and azide substitution and their application to one-pot synthesis of chain-end-functionalized polymers. J Am Chem Soc 139:10551–10560. https://doi.org/10.1021/jacs.7b05879

    Article  CAS  PubMed  Google Scholar 

  40. Han SY, Zheng YC, Sarkar J et al (2022) Reversible complexation mediated living radical polymerization using tetraalkylammonium chloride catalysts. Macromol Rapid Commun 43:2200468. https://doi.org/10.1002/marc.202200468

    Article  CAS  Google Scholar 

  41. Chang JJ, Pan HM, Goto A (2021) Synthesis of vinyl iodide chain-end polymers via organocatalyzed chain-end transformation. Chem Commun 57:1105–1108. https://doi.org/10.1039/D0CC07987A

    Article  CAS  Google Scholar 

  42. Mao WJ, Tay XT, Sarkar J et al (2022) Air-Tolerant Reversible Complexation Mediated Polymerization (RCMP) using aldehyde. Macromol Rapid Commun 43:2200091. https://doi.org/10.1002/marc.202200091

    Article  CAS  Google Scholar 

  43. Le HT, Goto A (2021) Halogen-bond-driven supramolecular assemblies of quaternary-ammonium-iodide-containing polymers in three phases. Cell Rep Phys Sci 2:2666–3864. https://doi.org/10.1016/j.xcrp.2021.100469

    Article  CAS  Google Scholar 

  44. Oh XY, Sakar J, Cham N et al (2022) Self-catalyzed synthesis of a nano-capsule and its application as a heterogeneous RCMP catalyst and nano-reactor. Polym Chem 13:6187–6196. https://doi.org/10.1039/D2PY01086K

    Article  CAS  Google Scholar 

  45. Sarkar J, Jackson AW, Herk AM et al (2020) Synthesis of nano-capsules via aqueous emulsion RCMP-PISA and encapsulation. Polym Chem 11:3904–3912. https://doi.org/10.1039/D0PY00465K

    Article  CAS  Google Scholar 

  46. Matyjaszewski K, Jakubowski W, Min K et al (2006) Diminishing catalyst concentration in atom transfer radical polymerization with reducing agents. Proc Natl Acad of Sci USA 103:15309–15314. https://doi.org/10.1073/pnas.0602675103

    Article  CAS  Google Scholar 

  47. Zhu GH, Zhang LF, Zhang ZB et al (2011) Iron-mediated ICAR ATRP of methyl methacrylate. Macromolecules 44:3233–3239. https://doi.org/10.1021/ma102958y

    Article  CAS  Google Scholar 

  48. Konkolewicz D, Magenau AJD, Averick SE et al (2012) ICAR ATRP with ppm Cu catalyst in water. Macromolecules 45:4461–4468. https://doi.org/10.1021/ma300887r

    Article  CAS  Google Scholar 

  49. Schmulbach CD, Hart DM (1964) molecular addition compounds of amines and iodine. evidence for the existence of a 2:1 triethylamine-iodine complex. J Am Chem Soc 86:2347–2351. https://doi.org/10.1021/ja01066a010

    Article  CAS  Google Scholar 

  50. Andrews L, Prochaska ES, Loewenschuss A (1980) Resonance raman and ultraviolet absorption spectra of the triiodide ion produced by alkali iodide-iodine argon matrix reactions. Inorg Chem 19:463–465. https://doi.org/10.1002/chin.198019001

    Article  CAS  Google Scholar 

  51. Mi YH, Wang Y, Guo SH et al (2015) Synthesis ang bactericidal performance of tetra-n-butylammonium polyiodides. Huaxue Shijie 37:590–594. https://doi.org/10.13822/j.cnki.hxsj.2015.07.003

    Article  CAS  Google Scholar 

  52. Chen KL, Zhang T, Shi Y et al (2018) Reversible complexation mediated polymerization (RCMP)–solution polymerization of methyl methacrylate catalyzed by Bu4N+I (BNI) with in-situ formed alkyl iodide initiator. Mater Res express 5:1–34. https://doi.org/10.1088/2053-1591/aad84f

    Article  CAS  Google Scholar 

  53. Gardner JM, Abrahamsson M, Farnum BH et al (2009) Visible light generation of iodine atoms and I-I bonds: Sensiized I- oxidation and I-3(-) photodissociation. J Am Chem Soc 131:16206–16214. https://doi.org/10.1021/ja905021c

    Article  CAS  PubMed  Google Scholar 

  54. Qu SW, Liu R, Duan WF et al (2019) RAFT dispersion polymerization in the presence of block copolymer nanoparticles and synthesis of multicomponent block copolymer nanoassemblies. Macromolecules 52:5168–5176

    Article  CAS  Google Scholar 

  55. Zhang Y, Wang P, Li N et al (2023) RAFT dispersion polymerization of nitrobenzene-based monomer and photo-response of its polymer nanoparticles. J Inorg Organomet Polym Mater 33:2368–2377

    Article  CAS  Google Scholar 

  56. Qu SW, Wang K, Khan H et al (2019) Synthesis of block copolymer nano-assemblies via ICAR ATRP and RAFT dispersion polymerization: how ATRP and RAFT lead to differences. Polym Chem 10:1150–1157

    Article  CAS  Google Scholar 

  57. Zhang Y, Han G, Cao MJ et al (2018) Influence of Solvophilic Homopolymers on RAFT polymerization-induced self-assembly. Macromolecules 51:4397–4406

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The financial support of the National Natural Science Foundation of China (no. 51373021 and 51809129) is gratefully acknowledged.

Funding

National Natural Science Foundation of China, 51373021, Yan Shi, 51809129, Yan Shi.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yan Shi.

Ethics declarations

Conflict of interest

All authors stated that there is on conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, Y., Fang, X., Feng, Z. et al. Reversible complexation mediated polymerization (RCMP) starting with a complex of iodine with organic salt and thermal initiators. J Polym Res 31, 123 (2024). https://doi.org/10.1007/s10965-024-03948-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10965-024-03948-y

Keywords

Navigation