Skip to main content
Log in

Use of mixed low/high vapor pressure solvent as a novel solvent design strategy for tuning fiber diameter in electrospun mats

  • Original Paper
  • Published:
Journal of Polymer Research Aims and scope Submit manuscript

Abstract

Fiber diameter is a key characteristic of fibrous electrospun mats. This study suggests a novel strategy for designing electrospinning solvents that enables the tailoring of fiber diameter over a wider range. It has been shown that the use of mixed high/low vapor pressure solvents can surpass the minimum fiber diameter achieved in electrospinning. N-methyl pyrrolidone (NMP) is added to N, N-dimethylformamide (DMF) in different weight ratios (0/100, 25/75, 50/50, 75/25 and 100/0) and the resultant dual solvent is used to electrospin polysulfone (20 wt% PSU solution). It is found that the addition of 25 wt% NMP to DMF decreases the fiber diameter from 0.853 ± 0.416 μm to 0.492 ± 0.163 μm i.e., ~ 42%. reduction in diameter. Surface tension measurements of PSU/NMP/DMF solutions and in situ measurements of electric current passing through the electrified PSU jet showed that solution retarded evaporation due to NMP addition has overcome the surface and electric forces. Nevertheless, beads form for solutions with an NMP / DMF weight ratio ≥ 50/50 which reveals that the technique can be applied as far as the morphology remains fibrous. This study thus offers a strategy that paves the way for future research on systematic tuning of fiber diameter based on designed mixed low/high vapor pressure solvent systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Pirsalami S, Zebarjad SM, Daneshmanesh H (2016) Evaluation and optimization of electrospun polyvinyl alcohol fibers via Taguchi methodology. Int Polym Proc 31(4):503–507. https://doi.org/10.3139/217.3278

    Article  Google Scholar 

  2. Homaeigohar SS, Elbahri M (2012) Novel compaction resistant and ductile nanocomposite nanofibrous microfiltration membranes. J Colloid Interface Sci 372(1):6–15. https://doi.org/10.1016/j.jcis.2012.01.012

    Article  CAS  PubMed  Google Scholar 

  3. Rasouli M, Pirsalami S, Zebarjad SM (2019) Optimizing the electrospinning conditions of polysulfone membranes for water microfiltration applications. Polym Int 68(9):1610–1617. https://doi.org/10.1002/pi.5858

    Article  CAS  Google Scholar 

  4. Eichhorn SJ, Sampson WW (2010) Relationships between specific surface area and pore size in electrospun polymer fibre networks. J Royal Soc Interface 7(45):641–649. https://doi.org/10.1098/rsif.2009.0374

    Article  CAS  Google Scholar 

  5. Rashid TU, Gorga RE, Krause WE (2021) Mechanical properties of electrospun fibers–a critical review. Adv Eng Mater 23(9):2100153. https://doi.org/10.1002/adem.202100153

    Article  Google Scholar 

  6. Rasouli M, Pirsalami S, Zebarjad SM (2020) Study on the formation and structural evolution of bead-on-string in electrospun polysulfone mats. Polym Int. https://doi.org/10.1002/pi.6021

    Article  Google Scholar 

  7. Drosou C, Krokida M, Biliaderis CG (2018) Composite pullulan-whey protein nano fibers made by electrospinning: impact of process parameters on fiber morphology and physical properties. Food Hydrocolloids 77:726–735. https://doi.org/10.1016/j.foodhyd.2017.11.014

    Article  CAS  Google Scholar 

  8. Tan S, Inai R, Kotaki M, Ramakrishna S (2005) Systematic parameter study for ultra-fine fiber fabrication via electrospinning process. Polymer 46:6128–6134. https://doi.org/10.1016/j.polymer.2005.05.068

    Article  CAS  Google Scholar 

  9. Buchko CJ, Chen LC, Shen Y, Martin DC (1999) Processing and microstructural characterization of porous biocompatible protein polymer thin films. Polymer 40:7397–7407

    Article  CAS  Google Scholar 

  10. Vitchuli N, Shi Q, Nowak J, Mccord M, Bourham M (2010) Electrospun Ultrathin Nylon Fibers for protective applications. J Appl Polym Sci 116(4):2181–2187. https://doi.org/10.1002/app

    Article  CAS  Google Scholar 

  11. Mo XM, Xu CY, Kotaki M, Ramakrishna S (2004) Electrospun P (LLA-CL) nanofiber: a biomimetic extracellular matrix for smooth muscle cell and endothelial cell proliferation. Biomaterials 25:1883–1890. https://doi.org/10.1016/j.biomaterials.2003.08.042

    Article  CAS  PubMed  Google Scholar 

  12. Sarabi-mianeji S, Scott J, Pag DJYS (2015) Impact of electrospinning process parameters on the measured current and Fiber diameter. Polym Eng Sci 55(11):2576–2582. https://doi.org/10.1002/pen

    Article  CAS  Google Scholar 

  13. Quinn JA, Yang Y, Buffington AN, Romero FN, Green MD (2018) Preparation and characterization of crosslinked electrospun poly(vinyl alcohol) nanofibrous membranes. Polymer 134:275–281. https://doi.org/10.1016/j.polymer.2017.11.023

    Article  CAS  Google Scholar 

  14. Rosid SM, Ajji A, Hasbullah H, Rosid SJM, Ismail AF, Goh PS (2021) Physicochemical characteristics of polysulfone nanofiber membranes with iron oxide nanoparticles via electrospinning. J Appl Polym Sci. https://doi.org/10.1002/app.51661

    Article  Google Scholar 

  15. Pascariu Dorneanu P, Cojocaru C, Samoila P, Olaru N, Airinei A, Rotaru A (2018) Novel fibrous composites based on electrospun PSF and PVDF ultrathin fibers reinforced with inorganic nanoparticles: evaluation as oil spill sorbents. Polym Adv Technol 29(5):1435–1446. https://doi.org/10.1002/pat.4255

    Article  CAS  Google Scholar 

  16. Obaid M, Tolba GMK, Motlak M, Fadali OA, Khalil KA, Almajid AA, Kim B, Barakat NAM (2015) Effective polysulfone-amorphous SiO2 NPs electrospun nanofiber membrane for high flux oil/water separation. Chem Eng J 279:631–638. https://doi.org/10.1016/j.cej.2015.05.028

    Article  CAS  Google Scholar 

  17. Yin J, Zhu G, Deng B (2013) Multi-walled carbon nanotubes (MWNTs)/polysulfone (PSU) mixed matrix hollow fiber membranes for enhanced water treatment. J Membr Sci 437:237–248. https://doi.org/10.1016/j.memsci.2013.03.021

    Article  CAS  Google Scholar 

  18. Josef E, Guterman R (2019) Designing solutions for Electrospinning of Poly(ionic liquid)s. Macromolecules 52(14):5223–5230. https://doi.org/10.1021/acs.macromol.9b00691

    Article  CAS  Google Scholar 

  19. Luo CJ, Nangrejo M, Edirisinghe M (2010) A novel method of selecting solvents for polymer electrospinning. Polymer 51(7):1654–1662. https://doi.org/10.1016/j.polymer.2010.01.031

    Article  CAS  Google Scholar 

  20. Han SO, Youk JH, Min KD, Kang YO, Park WH (2008) Electrospinning of cellulose acetate nanofibers using a mixed solvent of acetic acid/water: effects of solvent composition on the fiber diameter. Mater Lett 62(4–5):759–762. https://doi.org/10.1016/j.matlet.2007.06.059

    Article  CAS  Google Scholar 

  21. Song Z, Chiang SW, Chu X, Du H, Li J, Gan L, Xu C, Yao Y, He Y, Li B, Kang F (2018) Effects of solvent on structures and properties of electrospun poly(ethylene oxide) nanofibers. J Appl Polym Sci 135(5):1–10. https://doi.org/10.1002/app.45787

    Article  CAS  Google Scholar 

  22. Choi SW, Kim JR, Ahn YR, Jo SM, Cairns EJ (2007) Characterization of electrospun PVdF fiber-based polymer electrolytes. Chem Mater 19(1):104–115. https://doi.org/10.1021/cm060223+

    Article  CAS  Google Scholar 

  23. Abbas D, Mu’min MS, Bonanno M, Thiele S, Böhm T (2022) Active solution heating and cooling in electrospinning enabling spinnability from various solvents. J Appl Polym Sci 139(31):1–11. https://doi.org/10.1002/app.52730

    Article  CAS  Google Scholar 

  24. Cui X, Chen G, Han X (2006) Experimental vapor pressure data and a vapor pressure equation for N,N-dimethylformamide. J Chem Eng Data 51(5):1860–1861. https://doi.org/10.1021/je060224i

    Article  CAS  Google Scholar 

  25. Kneisl P, Zondlo JW (1987) Vapor pressure, Liquid Density, and the latent heat of vaporization as functions of temperature for four Dipolar Aprotic solvents. J Chem Eng Data 32(1):11–13. https://doi.org/10.1021/je00047a003

    Article  CAS  Google Scholar 

  26. Ma Z, Kotaki M, Ramakrishna S (2006) Surface modified nonwoven polysulphone (PSU) fiber mesh by electrospinning: a novel affinity membrane. J Membr Sci 272:179–187. https://doi.org/10.1016/j.memsci.2005.07.038

    Article  CAS  Google Scholar 

  27. Wendorff J, Agarwal S, Greiner A (2012) Electrospinning Materials, Processing, and Applications. Wiley-VCH Verlag & Co. KGaA, Weinheim, Germany

    Book  Google Scholar 

  28. Khan Zafarulla, Kafiah FM (2013) Preparation of Polysulfone Electrospun Nanofibers: Effect of Electrospinnng and Solution Parameters. Membrane Science and Technology 2013 (MST 2013). https://doi.org/10.13140/RG.2.1.4289.9681

  29. Dobosz KM, Kuo-Leblanc CA, Bowden JW, Schiffman JD (2021) Robust, small Diameter Hydrophilic nanofibers improve the flux of Ultrafiltration membranes. Ind Eng Chem Res 60(25):9179–9188. https://doi.org/10.1021/acs.iecr.1c01332

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Mousa HM, Alfadhel H, Ateia M, Abdel-Jaber GT (2020) Polysulfone-iron acetate/polyamide nanocomposite membrane for oil-water separation. Environ Nanotechnol Monit Manag 14. https://doi.org/10.1016/j.enmm.2020.100314

  31. Khayet M, Wang R (2018) Mixed Matrix Polytetrafluoroethylene/Polysulfone Electrospun Nanofibrous Membranes for Water desalination by membrane distillation [Research-article]. ACS Appl Mater Interfaces 10(28):24275–24287. https://doi.org/10.1021/acsami.8b06792

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Sedigheh Pirsalami or M. Reza Malayeri.

Ethics declarations

Conflict of interest

All authors declare that they have no conflicts of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kheilbash, M., Pirsalami, S., Malayeri, M.R. et al. Use of mixed low/high vapor pressure solvent as a novel solvent design strategy for tuning fiber diameter in electrospun mats. J Polym Res 31, 94 (2024). https://doi.org/10.1007/s10965-024-03940-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10965-024-03940-6

Keywords

Navigation