Skip to main content
Log in

Morphological and physicomechanical characterization of synthetic and natural fibers

  • Original Paper
  • Published:
Journal of Polymer Research Aims and scope Submit manuscript

Abstract

Green and renewable materials are becoming promising worldwide. Here, we compared morphological and mechanical strength characteristics of natural plant-based bast fibers (flax, hemp and nettle) with those of synthesized fibers (glass, basalt, carbon, polyacrylonitrile (PAN), polycaproamide (PCA) and viscose). The industrial bast fibers from hemp and nettle were extracted by chemical treatment with a sodium carbonate solution. The natural fibers were comparable in size to the synthetic ones. The PCA fibers had the largest diameter of 23–28 µm. The carbon monofiber had the lowest diameter of 7–8 µm. The dimension of the natural elementary fibers was 10–25 µm. The natural fibers had a better interfacial bonding to an epoxy matrix than PCA. Moreover, the specific strength of the unimpregnated and epoxy-impregnated fibers was determined. The natural fibers were superior in strength performance to some of synthetic fibers (viscose), while the specific strength of the impregnated flax fiber was commensurate with that of the impregnated PAN and PCA fibers. The specific strength of the flax and hemp fibers once impregnated with the matrix increased four- and twofold, respectively. The impregnated flax fibers exhibited the best mechanical strength behavior among the hemp and nettle bast fibers. The natural fibers are biodegradable, have a low density, and are more eco-benign than the mineral fibers. The selected natural fibers can be used to fabricate composites therefrom.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

Data availability

The data associated with this article is available from authors upon reasonable request.

References

  1. Gassan J, Mildner I, Bledzki AK (1999) Influence of fiber structure modification on the mechanical properties of flax fiber-epoxy composites. Mech Compos Mater 35:435–440. https://doi.org/10.1007/BF02329330

    Article  CAS  Google Scholar 

  2. Satyanarayana KG, Guimarães JL, Wypych F (2007) Studies on lignocellulosic fibers of Brazil. Part I: Source, production, morphology, properties and applications. Compos Part A Appl Sci Manuf 38(7):1694–1709. https://doi.org/10.1016/j.compositesa.2007.02.006

    Article  CAS  Google Scholar 

  3. Jawaid M, Abdul Khalil HPS, Abu Bakar A (2010) Mechanical performance of oil palm empty fruit bunches/jute fibres reinforced epoxy hybrid composites. Mater Sci Eng A 527(29–30):7944–7949

    Article  Google Scholar 

  4. Summerscales J, Dissanayake N, Virk A, Hall W (2010) A review of bast fibres and their composites Part 2–Composites. Compos Part A Appl Sci Manuf 41(10):1336–1344. https://doi.org/10.1016/j.compositesa.2010.05.020

    Article  CAS  Google Scholar 

  5. Munoz-Velez Vélez MF, Hidalgo-Salazar MA, Mina-Hernandez JH (2014) Fique fiber an alternative for reinforced plastics. Influence of surface modification. Rev Bio Agro 12(2):60–70

    Google Scholar 

  6. Peças P, Carvalho H, Salman H, Leite M (2018) Natural fibre composites and their applications: a review. J Compos Sci 2:66. https://doi.org/10.3390/jcs2040066

    Article  CAS  Google Scholar 

  7. de Oliveira Braga F, Milanezi TL, Monteiro SN, Louro LHL, Gomes AV, Lima EP (2018) Ballistic comparison between epoxy-ramie and epoxy-aramid composites in multilayered armor systems. J Mater Res Technol 7(4):541–549. https://doi.org/10.1016/j.jmrt.2018.06.018

    Article  CAS  Google Scholar 

  8. Senthilkumar K, Saba N, Rajini N, Chandrasekar M, Jawaid M, Siengchin S, Alotman OY (2018) Mechanical properties evaluation of sisal fibre reinforced polymer composites: a review. Constr Build Mater 174:713–729. https://doi.org/10.1016/j.conbuildmat.2018.04.143

    Article  CAS  Google Scholar 

  9. Oliveira MS, Luz FSD, Teixeira SA, Demosthenes LCDC, Pereira AC, Filho FDCG, Braga FO, Figueiredo ABDS, Monteiro SN (2020) Tucum fiber from amazon Astrocaryum vulgare Palm tree: novel reinforcement for polymer composites. Polymers 12(10):2259. https://doi.org/10.3390/polym12102259

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Jung JS, Song KH, Kim SH (2021) Biodegradable acetylated kenaf fiber composites. Fibers Polym 22(12):3437–3443. https://doi.org/10.1007/s12221-021-1237-x

    Article  CAS  Google Scholar 

  11. Huner U (2015) Effect of water absorption on the mechanical properties of flax fiber reinforced epoxy composites. J Adv Sci Tecnol Res 9:1–6. https://doi.org/10.12913/22998624/2357

    Article  Google Scholar 

  12. Chandrashekar KM, Gowda CV, Uduppa NGS (2016) Evaluation of mechanical properties of hemp-ramie fibers reinforced with epoxy hybrid composites. Int Res J Eng Technol 5(13):21–26

    Google Scholar 

  13. Raja AKA, Geethan KAV, Kumar SS, Kumar PS (2021) Influence of mechanical attributes, water absorption, heat deflection features and characterization of natural fibers reinforced epoxy hybrid composites for an engineering application. Fibers Polym 22:3444–3455. https://doi.org/10.1007/s12221-021-0222-8

    Article  CAS  Google Scholar 

  14. Mahesh M, Narendra Babu BR (2022) Investigation on 3-body abrasive behaviour of glass fiber and ramie fiber reinforced hybrid Epoxy composites. Int J Eng Res Technol 9(6):3118–3123

    Google Scholar 

  15. Cunha J, Neto H, Giacon V, Manzato L, Silva C (2021) Study on mechanical and thermal properties of amazon fibers on the polymeric biocomposites: Malva and Tucum. Fibers Polym 22:3203–3211. https://doi.org/10.1007/s12221-021-0843-y

    Article  CAS  Google Scholar 

  16. Hidalgo-Salazar M, Correa J (2018) Mechanical and thermal properties of biocomposites from nonwoven industrial fique fiber mats with epoxy resin and linear low density polyethylene. Res Phys 8:461–467. https://doi.org/10.1016/j.rinp.2017.12.025

    Article  Google Scholar 

  17. Aristri M, Lubis MA, Laksana R, Sari R, Heri Apri I, Kristak L, Antov P, Pizzi A (2022) Thermal and mechanical performance of ramie fibers modified with polyurethane resins derived from acacia mangium bark tannin. J Mater Res Technol 18:2413–2427. https://doi.org/10.1016/j.jmrt.2022.03.131

    Article  CAS  Google Scholar 

  18. Libera Junior VD, Teixeira LA, Amico SC, da Luz M (2022) Processing, thermal and mechanical properties of composite laminates with natural fibers prepregs. Polym Polym Compos 30:2–10. https://doi.org/10.1177/09673911221087591

    Article  CAS  Google Scholar 

  19. Väisänen T, Das O, Tomppo L (2017) A review on new bio-based constituents for natural fiber-polymer composites. J Clean Prod 149:582–596. https://doi.org/10.1016/j.jclepro.2017.02.132

    Article  CAS  Google Scholar 

  20. Nirmal Kumar K, Babu P, Surakasi R, Manoj Kumar P, Ashokkumar P, Khan R, Alfozan A, Tafesse D (2022) Review article mechanical and thermal properties of bamboo fiber-reinforced PLA polymer composites: a critical study. Int J Polym Sci 2022:1332157. https://doi.org/10.1155/2022/1332157

    Article  CAS  Google Scholar 

  21. Gaidukova G, Platnieks O, Aunins A, Barkāne A, Gaidukovs S (2021) Spent coffee waste as a renewable source for the production of sustainable poly(butylene succinate) biocomposites from a circular economy perspective. RSC Adv 11:18580–18589. https://doi.org/10.1039/D1RA03203H

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Vivek S, Kanthavel K (2019) Effect of bagasse ash filled epoxy composites reinforced with hybrid plant fibres for mechanical and thermal properties. Compos B Eng 160:170–176. https://doi.org/10.1016/j.compositesb.2018.10.038

    Article  CAS  Google Scholar 

  23. Essid S, Hegde VJ, Mahieu A, Bizet L, Leblanc N, Saouab A (2021) Comparison of the properties of flax shives based particleboards prepared using binders of bio-based lignin and partially bio-based epoxy resin. Int J Adhes Adhes 109:102915. https://doi.org/10.1016/j.ijadhadh.2021.102915

    Article  CAS  Google Scholar 

  24. Kocaman S, Ahmetli G (2016) A study of coating properties of biobased modified epoxy resin with different hardeners. Prog Org Coat 97:53–64. https://doi.org/10.1016/j.porgcoat.2016.03.025

    Article  CAS  Google Scholar 

  25. Handika SO, Lubis MAR, Sari RK, Laksana RPB, Antov P, Savov V, Gajtanska M, Iswanto AH (2021) Enhancing thermal and mechanical properties of ramie fiber via impregnation by lignin-based polyurethane resin. Materials 14(22):6850. https://doi.org/10.3390/ma14226850

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Ibrahim M, Hassan M, Dolah R, Mohamed Y, Mohd Z, Salit MS (2018) Tensile behaviour for mercerization of single kenaf fiber. Mal J Fund Appl Sci 14:437–439. https://doi.org/10.11113/mjfas.v14n4.1099

    Article  Google Scholar 

  27. Pereira AC, Lima AM, Demosthenes LCDC, Oliveira MS, Costa UO, Bezerra WBA, Monteiro SN, Rodriguez RJS, Deus JF, Anacleto PW (2020) Ballistic performance of ramie fabric reinforcing graphene oxide-incorporated epoxy matrix composite. Polymers 12(11):2711. https://doi.org/10.3390/polym12112711

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. de Luz FS, Garcia Filho EDC, Oliveira MS, Nascimento LFC, Monteiro SN (2020) Composites with natural fibers and conventional materials applied in a hard armor: a comparison. Polymers 12:1920. https://doi.org/10.3390/polym12091920

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Birniwa AH, Abdullahi SS, Ali M, Mohammad REA, Jagaba AH, Amran M, Avudaiappan S, Maureira-Carsalade N, Flores EIS (2023) Recent trends in treatment and fabrication of plant-based fiber-reinforced epoxy composite: A review. J Compos Sci 7(3):120. https://doi.org/10.3390/jcs7030120

    Article  CAS  Google Scholar 

  30. Bhaskaran SK, Boga K, Arukula R, Gaddam SK (2023) Natural fibre reinforced vegetable-oil based polyurethane composites: A review. J Polym Res 30:325. https://doi.org/10.1007/s10965-023-03703-9

    Article  CAS  Google Scholar 

  31. Yao JM, Weidong Y (2007) Tensile strength and its variation for PAN‐based carbon fibers. II. Calibration of the variation from testing. J Appl Polym Sci 104:2625–2632. https://doi.org/10.1002/app.24455

    Article  CAS  Google Scholar 

  32. Li P, Guo M, Sun F, Fu J, Gao W (2021) Study on gathering-and-twisting mechanism of fibers and cmc-na/pam/pva solution optimization for enhancing cotton yarn performance by adhesive-aided ring spinning. Fibers Polym 22:3490–3500. https://doi.org/10.1007/s12221-021-0383-5

    Article  CAS  Google Scholar 

  33. Fangueiro R, Rana S (2015) Natural Fibres: Advances in Science and Technology Towards Industrial Applications, Dordrecht: Springer Dordrecht, Netherlands, p 456. https://doi.org/10.1007/978-94-017-7515-1

  34. Brittle fracture characteristics (2005) M. Kumosa, L.S. Kumosa, D. Armentrout. Failure analyses of nonceramic insulators. Part 1. IEEE Electr Insul Mag 21:14–27. https://doi.org/10.1109/MEI.2005.1437604

    Article  Google Scholar 

  35. Jaber AA, Abbas SA, Farah AA, Kopec KK, Alsalik YM, Tayeb MA, Verghese N (2023) Effect of fiber sizing levels on the mechanical properties of carbon fiber-reinforced thermoset composites. Polymers 15:4678. https://doi.org/10.3390/polym15244678

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Saleh Mousavi-Bafrouyi SM, Eslami-Farsani R, Geranmayeh A (2021) The temperature effects on the mechanical properties of pseudo-ductile thin-ply unidirectional carbon-basalt fibers/epoxy hybrid composites with different stacking sequences. Fibers Polym 22:3162–3171. https://doi.org/10.1007/s12221-021-1052-4

    Article  CAS  Google Scholar 

  37. Sesha Rao Y, Vempati SR, Srinivasulu R, Gopinath V, Sumanth K Estimation of mechanical properties of carbon fiber/epoxy hybrid composites with various fiber length and orientation. Int J Adv Res Sci Eng Technol (IJARET) 11:702–717. https://doi.org/10.34218/IJARET.11.12.2020.072

  38. Wilde AL, Alexander DLJ, Pierlot AP, Denning R, Miao M (2021) Predicting the cyclization index and density of stabilized polyacrylonitrile tow from processing conditions. Fibers Polym 22:3241–3250. https://doi.org/10.1007/s12221-021-0011-4

    Article  CAS  Google Scholar 

  39. Ishikawa R, Ito M, Kohara N (2017) Using the crystals and silica of ashed specimens to identify their vegetable fibers. JP 26:Z6-3915

    Google Scholar 

  40. Gholampour A, Ozbakkaloglu T (2020) A review of natural fiber composites: properties, modification and processing techniques, characterization, applications. J Mater Sci 55:829–892. https://doi.org/10.1007/s10853-019-03990-y

    Article  CAS  Google Scholar 

  41. van Dam EG, Gorshkova TA (2003) Cell walls and fibers. Fiber formation. In: Thomas B (ed) Encyclopedia of Applied Plant Sciences. Cambridge: Elsevier Academic Press, USA, pp 87–96 (2003). https://doi.org/10.1016/B0-12-227050-9/00046-6

Download references

Acknowledgements

This work was performed under the auspices of the Ministry of Science and Higher Education of the Russian Federation (contract ID: 121061500030-3) using equipment provided by the Biysk Regional Center for Shared Use of Scientific Equipment SB RAS (IPCET SB RAS, Biysk).

Author information

Authors and Affiliations

Authors

Contributions

Zakhar Sakoshev: Data curation, Formal analysis, Investigation, Validation, Visualization, Writing – original draft. Nikolay Bychin, Pavel Medvedev, Gleb Zadvornykh, Egor Sakoshev: Conceptualization, Formal analysis, Methodology, Resources, Validation. Aleksey Blaznov: Writing – review & editing, Supervision. Vyacheslav Firsov, Irina Cheremukhina: Conceptualization, Resources.

Corresponding author

Correspondence to Aleksey N. Blaznov.

Ethics declarations

Ethical approval

Not applicable.

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sakoshev, Z.G., Blaznov, A.N., Bychin, N.V. et al. Morphological and physicomechanical characterization of synthetic and natural fibers. J Polym Res 31, 86 (2024). https://doi.org/10.1007/s10965-024-03938-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10965-024-03938-0

Keywords

Navigation