Skip to main content
Log in

Poly(ethyl methacrylate)-based diblock copolymer nano-objects prepared via RAFT-mediated polymerization induced self-assembly in n-heptane

  • Original Paper
  • Published:
Journal of Polymer Research Aims and scope Submit manuscript

Abstract

A series of poly(lauryl methacrylate)-poly(ethyl methacrylate) (PLMA-PEMA) diblock copolymer nano-objects were prepared via reversible addition-fragmentation chain transfer (RAFT) dispersion polymerization in n-heptane at 65 °C. By using PLMA with a fixed degree of polymerization (DP) of 18 as a steric stabilizer block, polymerization of EMA at relatively high concentrations (15% w/w solids or above) allowed for the production of nano-objects with morphologies of sphere, worm and vesicle. Interestingly, at lower concentrations, the diblock copolymer could form unusual structures: micrometer-sized rods and nanotubes at 10% and 7.5% w/w solids, respectively. The SEM and TEM characterization suggests that the rods are kinetically trapped aggregates of worms and spheres, and the formation of nanotubes is presumably due to the fusion of ellipsoidal vesicles and then the shear force exerted by stirring which may trigger the elongation of the vesicles to form the nanotubes. Besides, the diblock copolymer worms exhibited thermoresponsive behavior on heating to 90 °C due to the change in nano-object morphology from worms to spheres.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data availability

The data will be available upon reasonable request to the corresponding author.

References

  1. Israelachvili JN, Mitchell DJ, Ninham BW (1976) Theory of self-assembly of hydrocarbon amphiphiles into micelles and bilayers. J Chem Soc, Faraday Trans 2(72):1525–1568

    Article  Google Scholar 

  2. Riess G (2003) Micellization of block copolymers. Prog Polym Sci 28:1107–1170

    Article  CAS  Google Scholar 

  3. Hu X, Hu J, Tian J, Ge Z, Zhang G, Luo K, Liu S (2013) Polyprodrug amphiphiles: hierarchical assemblies for shape-regulated cellular internalization. J Am Chem Soc 135:17617–17629

    Article  CAS  PubMed  Google Scholar 

  4. Daubian D, Gaitzsch J, Meier W (2020) Synthesis and complex self-assembly of amphiphilic block copolymers with a branched hydrophobic poly(2-oxazoline) into multicompartment micelles, pseudo-vesicles and yolk/shell nanoparticles. Polym Chem 11:1237–1248

    Article  CAS  Google Scholar 

  5. Tritschler U, Pearce S, Gwyther J, Whittell GR, Manners I (2017) 50th Anniversary perspective: Functional nanoparticles from the solution self-assembly of block copolymers. Macromolecules 50:3439–3463

    Article  CAS  Google Scholar 

  6. Jain S, Bates FS (2003) On the origins of morphological complexity in block copolymer surfactants. Science 300:460–464

    Article  CAS  PubMed  Google Scholar 

  7. Xu R, Winnik MA, Hallett FR, Riess G, Croucher MD (1991) Light-scattering study of the association behavior of styrene-ethylene oxide block copolymers in aqueous solution. Macromolecules 24:87–93

    Article  CAS  Google Scholar 

  8. Canning SL, Smith GN, Armes SP (2016) A critical appraisal of RAFT-mediated polymerization-induced self-assembly. Macromolecules 49:1985–2001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Derry MJ, Fielding LA, Armes SP (2016) Polymerization-induced self-assembly of block copolymer nanoparticles via RAFT non-aqueous dispersion polymerization. Prog Polym Sci 52:1–18

    Article  CAS  Google Scholar 

  10. Liu C, Hong C, Pan C (2020) Polymerization techniques in polymerization-induced self-assembly (PISA). Polym Chem 11:3673–3689

    Article  CAS  Google Scholar 

  11. D’Agosto F, Rieger J, Lansalot M (2020) RAFT-Mediated polymerization-induced self-assembly. Angew Chem Int Ed 59:8368–8392

    Article  CAS  Google Scholar 

  12. Huang J, Zhu H, Liang H, Lu J (2016) Salicylaldehyde-functionalized block copolymer nano-objects: one-pot synthesis via polymerization-induced self-assembly and their simultaneous cross-linking and fluorescence modification. Polym Chem 7:4761–4770

    Article  CAS  Google Scholar 

  13. Zaquen N, Yeow J, Junkers T, Boyer C, Zetterlund PB (2018) Visible light-mediated polymerization-induced self-assembly using continuous flow reactors. Macromolecules 51:5165–5172

    Article  CAS  Google Scholar 

  14. Zhang Q, Zeng R, Zhang Y, Chen Y, Zhang L, Tan J (2020) Two polymersome evolution pathways in One Polymerization-Induced Self-Assembly (PISA) system. Macromolecules 53:8982–8991

    Article  CAS  Google Scholar 

  15. Cao C, Chen F, Garvey CJ, Stenzel MH (2020) Drug-directed morphology changes in Polymerization-Induced Self-Assembly (PISA) influence the biological behavior of nanoparticles. ACS Appl Mater Interfaces 12:30221–30233

    Article  CAS  PubMed  Google Scholar 

  16. Chen J, Cai S, Wang R, Wang S, Zhang J, Wan X (2020) Polymerization-induced self-assembly of conjugated block copoly(phenylacetylene)s. Macromolecules 53:1638–1644

    Article  CAS  Google Scholar 

  17. Dao TPT, Vezenkov L, Subra G, Amblard M, In M, Meins JL, Aubrit F, Moradi M, Ladmiral V, Semsarilar M (2020) Self-assembling peptide-polymer nano-objects via polymerization-induced self-assembly. Macromolecules 53:7034–7043

    Article  CAS  Google Scholar 

  18. Huang J, Li D, Liang H, Lu J (2017) Synthesis of photocrosslinkable and amine containing multifunctional nanoparticles via polymerization-induced self-assembly. Macromol Rapid Commun 38:1700202

    Article  Google Scholar 

  19. Zheng J, Wang X, An Z (2019) Synthesis of oxidation responsive vesicles with different block sequences via RAFT polymerization-induced self-assembly. Acta Polym Sin 50:1167–1176

    CAS  Google Scholar 

  20. Su Z, Tan M, Cao Y, Shi Y, Fu Z (2019) One-pot Preparation of block copolymer nanoparticles by polymerization-induced self-assembly. Acta Polym Sin 50:808–815

    CAS  Google Scholar 

  21. Ma Y, Gao P, Ding Y, Huang L, Wang L, Lu X, Cai Y (2019) Visible light initiated thermoresponsive aqueous dispersion polymerization-induced self-assembly. Macromolecules 52:1033–1041

    Article  CAS  Google Scholar 

  22. György C, Hunter SJ, Girou C, Derry MJ, Armes SP (2020) Synthesis of poly(stearyl methacrylate)-poly(2-hydroxypropyl methacrylate) diblock copolymer nanoparticles via RAFT dispersion polymerization of 2-hydroxypropyl methacrylate in mineral oil. Polym Chem 11:4579–4590

    Article  Google Scholar 

  23. Fielding LA, Lane JA, Derry MJ, Mykhaylyk OO, Armes SP (2014) Thermo-responsive diblock copolymer worm gels in non-polar solvents. J Am Chem Soc 136:5790–5798

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Rymaruk MJ, O’Brien CT, Brown SL, Williams CN, Armes SP (2019) Effect of core cross-linking on the physical properties of poly(dimethylsiloxane)-based diblock copolymer worms prepared in silicone oil. Macromolecules 52:6849–6860

    Article  CAS  Google Scholar 

  25. Pei Y, Thurairajah L, Sugita OR, Lowe AB (2015) RAFT dispersion polymerization in nonpolar media: Polymerization of 3-phenylpropyl methacrylate in n-tetradecane with poly(stearyl methacrylate) homopolymers as macro chain transfer agents. Macromolecules 48:236–244

    Article  CAS  Google Scholar 

  26. Docherty PJ, Girou C, Derry MJ, Armes SP (2020) Epoxy-functional diblock copolymer spheres, worms and vesicles via polymerization-induced self-assembly in mineral oil. Polym Chem 11:3332–3339

    Article  CAS  Google Scholar 

  27. Rymaruk MJ, O’Brien CT, Brown SL, Williams CN, Armes SP (2015) Polydimethylsiloxane-based diblock copolymer nano-objects prepared in nonpolar media via RAFT-mediated polymerization- induced self-assembly. Macromolecules 48:3547–3555

    Article  Google Scholar 

  28. Houillot L, Bui C, Farcet C, Moire C, Raust JA, Pasch H, Save M, Charleux B (2010) Dispersion polymerization of methyl acrylate in nonpolar solvent stabilized by block copolymers formed in situ via the RAFT process. ACS Appl Mater Interfaces 2:434–442

    Article  CAS  PubMed  Google Scholar 

  29. Rymaruk MJ, Hunter SJ, O’Brien CT, Brown SL, Williams CN, Armes SP (2019) RAFT dispersion polymerization in silicone oil. Macromolecules 52:2822–2832

    Article  CAS  Google Scholar 

  30. Fielding LA, Derry MJ, Ladmiral V, Rosselgong J, Rodrigues AM, Ratcliffe LPD, Sugiharaef S, Armes SP (2013) RAFT dispersion polymerization in non-polar solvents: facile production of block copolymer spheres, worms and vesicles in n-alkanes. Chem Sci 4:2081–2087

    Article  CAS  Google Scholar 

  31. Cunningham VJ, Armes SP, Musa OM (2016) Synthesis, characterisation and Pickering emulsifier performance of poly(stearyl methacrylate)-poly(N-2-(methacryloyloxy)ethyl pyrrolidone) diblock copolymer nano-objects via RAFT dispersion polymerisation in n-dodecane. Polym Chem 7:1882–1891

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Ratcliffe LPD, McKenzie BE, Bouëdec GMDL, Williams CN, Brown SL, Armes SP (2015) Polymerization-induced self-assembly of all-acrylic diblock copolymers via RAFT dispersion polymerization in Alkanes. Macromolecules 48:8594–8607

    Article  CAS  Google Scholar 

  33. Ramesh S, Uma O, Shanti R, Yi LJ, Ramesh K (2014) Preparation and characterization of poly (ethyl methacrylate) based polymer electrolytes doped with 1-butyl-3-methylimidazolium trifluoromethanesulfonate. Measurement 48:263–273

    Article  Google Scholar 

  34. Mathew CM, Karthika B, Ulaganathan M, Rajendran S (2015) Electrochemical analysis on poly (ethyl methacrylate)-based electrolyte membranes. Bull Mater Sci 38:151–156

    Article  CAS  Google Scholar 

  35. Hutcheon G, Messiou C, Wyre R, Davies M, Downes S (2001) Water absorption and surface properties of novel poly (ethylmethacrylate) polymer systems for use in bone and cartilage repair. Biomaterials 22:667–676

    Article  CAS  PubMed  Google Scholar 

  36. Mohanty F, Swain SK (2019) Nano silver embedded starch hybrid graphene oxide sandwiched poly (ethylmethacrylate) for packaging application. Nano Struct Nano-Objects 18:100300

    Article  Google Scholar 

  37. Armstrong R, Wright J (1992) Impedance studies of poly ethylmethacrylate coatings formed upon tin-free steel. Corros Sci 33:1529–1539

    Article  CAS  Google Scholar 

  38. Canning SL, Cunningham VJ, Ratcliffe LPD, Armes SP (2017) Phenyl acrylate is a versatile monomer for the synthesis of acrylic diblock copolymer nanoobjects via polymerization-induced self-assembly. Polym Chem 8:4811–4821

    Article  CAS  Google Scholar 

  39. Moad G, Rizzardo E, Thang SH (2008) Toward living radical polymerization. Acc Chem Res 41:1133–1142

    Article  CAS  PubMed  Google Scholar 

  40. Garrett ET, Pei Y, Lowe AB (2016) Microwave-assisted synthesis of block copolymer nanoparticles via RAFT with polymerization induced self-assembly in methanol. Polym Chem 7:297–301

    Article  CAS  Google Scholar 

  41. Tan J, Huang C, Liu D, Zhang X, Bai Y, Zhang L (2016) Alcoholic photoinitiated polymerization-induced self-assembly (Photo-PISA): A fast route toward poly(isobornyl acrylate)-based diblock copolymer nano-objects. ACS Macro Lett 5:894–899

    Article  CAS  PubMed  Google Scholar 

  42. Figg CA, Simula A, Gebre KA, Tucker BS, Haddleton DM, Sumerlin BS (2015) Polymerization-induced thermal self-assembly (PITSA). Chem Sci 6:1230–1236

    Article  CAS  PubMed  Google Scholar 

  43. Darmau B, Rymaruk MJ, Warren NJ, Bening R, Armes SP (2020) RAFT dispersion polymerization of benzyl methacrylate in non-polar media using hydrogenated polybutadiene as a steric stabilizer block. Polym Chem 11:7533–7541

    Article  CAS  Google Scholar 

  44. Pei Y, Lowe AB (2014) Polymerization-induced self-assembly: ethanolic RAFT dispersion polymerization of 2-phenylethyl methacrylate. Polym Chem 5:2342–2351

    Article  CAS  Google Scholar 

  45. Derry MJ, Mykhaylyk OO, Armes SP (2017) A vesicle-to-worm transition provides a new high-temperature oil thickening mechanism. Angew Chem 129:1772–1776

    Article  Google Scholar 

Download references

Acknowledgements

Financial support by Guangdong Basic and Applied Basic Research Foundation (2020A1515011275) and the National Natural Science Foundation of China (21704112) is greatly acknowledged.

Funding

National Natural Science Foundation of China, 21704112, Jianbing Huang, Basic and Applied Basic Research Foundation of Guangdong Province, 2020A1515011275, Jianbing Huang.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jianbing Huang.

Ethics declarations

Conflicts of interest

The authors declare no potential conflicts of interest with respect to the research, authorship, and publication of this article.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 6698 KB)

Supplementary file1 (DOCX 643 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, S., Huang, J. Poly(ethyl methacrylate)-based diblock copolymer nano-objects prepared via RAFT-mediated polymerization induced self-assembly in n-heptane. J Polym Res 31, 84 (2024). https://doi.org/10.1007/s10965-024-03917-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10965-024-03917-5

Keywords

Navigation