Skip to main content
Log in

Microwave irradiated polyester staple fibers for natural rubber with excellent interface performance

  • Original Paper
  • Published:
Journal of Polymer Research Aims and scope Submit manuscript

Abstract

The excellent bonding performance between polyester fibers and rubber is key to the high elasticity and fatigue resistance of rubber composite materials. Here, the modified polyester staple fiber (MPET) was obtained by microwave irradiation and surface modification with γ-aminopropyltriethoxysilane (KH550). The results revealed that KH550 reacted with the carboxyl groups on the surface of PET and thus adhered to the fiber surface, which was beneficial in improving compatibility with rubber. When reinforcing natural rubber (NR), MPET combined with the NR molecular chain flexibility due to the rigidity of its own main chain structure. This synergy resulted in the formation of inter-chain entanglements, contributing to a reduction in internal energy dissipation and heat generation within the composite. As the MPET dosage is augmented, the maximum torque of the NR compound during the mixing process exhibits an upward trend. In parallel, the cured NR rubber experiences a gradual reduction in both tensile strength and elongation at break, accompanied by a progressive increase in hardness. Furthermore, a notable elevation in tear strength is observed. This observed trajectory accentuates the intricate interplay between the dosage of MPET and the mechanical attributes of the NR rubber composite. The results of Rubber Processing Analyzer (RPA), Dynamic Mechanical Analysis (DMA) and Scanning Electron Microscope (SEM) indicate that the interfacial bonding between MPET and NR shows promising prospects as rigid short fibers for reinforcing non-polar rubber.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Zhong J, Luo Z, Zhang H, Ji Y, Wang X, Gong W (2023) Influence of interfacial property param of short fiber/rubber composites on fatigue behavior. Int J Fatigue 167:107312–107323. https://doi.org/10.1016/j.ijfatigue.2022.107312

    Article  CAS  Google Scholar 

  2. Yin L, Zhou Z, Luo Z et al (2019) Reinforcing effect of aramid fibers on fatigue behavior of SBR/aramid fiber composites. Polym Test 80:106092–106099. https://doi.org/10.1016/j.polymertesting.2019.106092

    Article  CAS  Google Scholar 

  3. Kabziński A (2010) Rubber Textile composites application of fabrics in Conveyor belts. Techniczne Wyroby Włókiennicze 18:59–63

    Google Scholar 

  4. Matsubara M, Teramoto S, Nagatani A et al (2020) Effect of Fiber orientation on Nonlinear Damping and Internal Microdeformation in Short-Fiber-Reinforced Natural Rubber. Exp Techniques 45:37–47. https://doi.org/10.1007/s40799-020-00404-6

    Article  Google Scholar 

  5. Tian L, Lv P, Zhuo J, Wei Q (2019) Preparation and characteristics of an advanced polyester tire cord with hybrid effect. J Eng Fiber Fabr 14:1–7. https://doi.org/10.1177/1558925018825271

    Article  CAS  Google Scholar 

  6. Huang W, Li Y, Zhao H et al (2023) A new eco-friendly dipping system for PA66 fiber cords/rubber composites with strong interfacial adhesion and good fatigue stability. Compos Part B: Eng 253:110541–110550. https://doi.org/10.1016/j.compositesb.2023.110541

    Article  CAS  Google Scholar 

  7. He X, Shi X, Hoch M, Gögelein C (2018) Mechanical properties of aramid fiber and carbon black filled hydrogenated nitrile rubber for packer compounds. Polym Compos 39:3212–3226. https://doi.org/10.1002/pc.24331

    Article  CAS  Google Scholar 

  8. Trejbal J, Kopecký L, Tesárek P et al (2016) Impact of surface plasma treatment on the performance of PET fiber reinforcement in cementitious composites. Cem Concrete Res 89:276–287. https://doi.org/10.1016/j.cemconres.2016.08.018

    Article  CAS  Google Scholar 

  9. Ouyang Z, Xu D, Yu H-Y, Li S, Song Y, Tam KC (2022) Novel ultrasonic-coating technology to design robust, highly sensitive and wearable textile sensors with conductive nanocelluloses. Chem Eng J 428:131289–131300. https://doi.org/10.1016/j.cej.2021.131289

    Article  CAS  Google Scholar 

  10. Zhang B, Liu S, Yin L et al (2022) Nanoscale analysis of the interface of dip layer/rubber in fiber/rubber composites. Polymer 262:125472–125481. https://doi.org/10.1016/j.polymer.2022.125472

    Article  CAS  Google Scholar 

  11. Wang L, Shi Y, Chen S et al (2017) Highly efficient mussel-like inspired modification of aramid fibers by UV-accelerated catechol/polyamine deposition followed chemical grafting for high-performance polymer composites. Chem Eng J 314:583–593. https://doi.org/10.1016/j.cej.2016.12.015

    Article  CAS  Google Scholar 

  12. Doganci E (2020) Improving adhesion between polyester cord and ubber by using glycidyl-POSS. J Appl Polym Sci 138:49681–49697. https://doi.org/10.1002/app.49681

    Article  CAS  Google Scholar 

  13. Lin G, Wang H, Boquan Y et al (2020) Combined treatments of fiber surface etching/silane-coupling for enhanced mechanical strength of aramid fiber-reinforced rubber blends. Mater Chem and Phys 255:123486–123494. https://doi.org/10.1016/j.matchemphys.2020.123486

    Article  CAS  Google Scholar 

  14. Deng S, Yu C, Liu X et al (2020) Efficient and enhanced Hg2 + removal from water using a thio functionalized fibrous adsorbent prepared with microwave irradiation: batch and fixed-bed column study. J Clean Prod 267:122163–122173. https://doi.org/10.1016/j.jclepro.2020.122163

    Article  CAS  Google Scholar 

  15. Wang B, Duan Y, Zhang J, Zhao X (2016) Microwave radiation effects on carbon fibres interfacial performance. Compos Part B: Eng 99:398–406. https://doi.org/10.1016/j.compositesb.2016.06.032

    Article  CAS  Google Scholar 

  16. Feriancová A, Dubec A, Pagáčová J, Papučová I, Moricová K, Žitňan M (2021) Preparation and application of modified organo-kaolinite by microwave-assisted irradiation. Appl Clay Sci 213:106259–106268. https://doi.org/10.1016/j.clay.2021.106259

    Article  CAS  Google Scholar 

  17. Yuan J-M, Fan Z-F, Yang Q-C, Li W, Wu Z-J (2018) Surface modification of carbon fibers by microwave etching for epoxy resin composite. Compos Sci Technol 164:222–228. https://doi.org/10.1016/j.compscitech.2018.05.043

    Article  CAS  Google Scholar 

  18. Deng S, zhang G, Chen S, Xue Y, Du Z, Wang P (2016) Rapid and effective preparation of a HPEI modified biosorbent based on cellulose fiber with a microwave irradiation method for enhanced arsenic removal in water. J Mater Chem A 4:15851–15860. https://doi.org/10.1039/c6ta06051j

    Article  CAS  Google Scholar 

  19. Ma L, Zhang J, Teng C (2020) Covalent functionalization of aramid fibers with zinc oxide nano-interphase for improved UV resistance and interfacial strength in composites. Compos Sci Technol 188:107996–108003. https://doi.org/10.1016/j.compscitech.2020.107996

    Article  CAS  Google Scholar 

  20. Huang J, Gui C, Ma H, Li P, Wu W, Chen Z (2021) Surface metallization of PET sheet: fabrication of pd nanoparticle/polymer brush to catalyze electroless nickel plating. Compos Sci Technol 202:108547–108555. https://doi.org/10.1016/j.compscitech.2020.108547

    Article  CAS  Google Scholar 

  21. Chen Y, Wu X, Wei J, Wu H (2020) Characterization and application to Fiber Reinforced Composite of Catechol/polyethyleneimine modified polyester fabrics by mussel-inspiration. Fiber Polym 21:2625–2634. https://doi.org/10.1007/s12221-020-1161-5

    Article  CAS  Google Scholar 

  22. He H, Wu P, Yang Z et al (2022) A facile way to Modify Polyester Fabric to enhance the adhesion behavior to Rubber. Coatings 12:1344–1354. https://doi.org/10.3390/coatings12091344

    Article  CAS  Google Scholar 

  23. Chen SH, Ahmad N, Kuo CJ (2022) Development of multifunctional Nano-Graphene-Grafted Polyester to enhance thermal insulation and performance of modified polyesters. Polymers 14:3821–3848. https://doi.org/10.3390/polym14183821

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Huang J, Xu L, Zhao D et al (2020) A facile process to fabricate metal coating on PET sheet: Preparation of highly active polymer brush/Ag particle and its application in electroless copper plating. Chem Eng J 383:123199–123209. https://doi.org/10.1016/j.cej.2019.123199

    Article  CAS  Google Scholar 

  25. Shu X, Ren H, Jiang Y et al (2020) Enhanced electromagnetic wave absorption performance of silane coupling agent KH550@Fe3O4 hollow nanospheres/graphene composites. J Mater Chem C 8:2913–2926. https://doi.org/10.1039/c9tc05658k

    Article  CAS  Google Scholar 

  26. Marković D, Radoičić M, Barudžija T, Radetić M (2021) Modification of PET and PA fabrics with alginate and copper oxides nanoparticles. Compos Interface 28:1171–1187. https://doi.org/10.1080/09276440.2020.1868267

    Article  CAS  Google Scholar 

  27. Um H-J, Hwang Y-T, Choi K-H, Kim H-S (2021) Effect of crystallinity on the mechanical behavior of carbon fiber reinforced polyethylene-terephthalate (CF/PET) composites considering temperature conditions. Compos Sci Technol 207:108745–108753. https://doi.org/10.1016/j.compscitech.2021.108745

    Article  CAS  Google Scholar 

  28. Chen J, Zhong J, Li S, Wang B, Pan R, Gao L (2017) Mechanical properties of siliceous earth/natural rubber composites. Polym Eng Sci 58:1043–1052. https://doi.org/10.1002/pen.24664

    Article  CAS  Google Scholar 

  29. Escócio VA, Visconte LLY, Nunes RCR, de Oliveira MG (2008) Rheology and Processability of Natural Rubber composites with Mica. Int J Polym Mater 57:374–382. https://doi.org/10.1080/00914030701420202

    Article  CAS  Google Scholar 

  30. Hao Z, Shen J, Sheng X et al (2020) Enhancing performances of Polyamide 66 short Fiber/Natural Rubber composites via. Situ Vulcanization Reaction Fiber Polym 21:392–398. https://doi.org/10.1007/s12221-020-9475-x

    Article  CAS  Google Scholar 

  31. Hussain S, Zhao Z, Song Y, Zhang C (2023) Effect of SiO2 surface modification on the filler-reinforced interfaces in SiO2-filled functional styrene butadiene rubber composites. J Appl Polym Sci E 54401–54412. https://doi.org/10.1002/app.54401

  32. Wang J, Wang W, Geng X, Nishi T, Zhao X, Zhang L (2018) Development of high damping acrylic rubber/sliding graft copolymer composites. RSC Adv 8:36172–36180. https://doi.org/10.1039/c8ra04644a

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Lin J, Luo Y, Zhong B, Hu D, Jia Z, Jia D (2018) Enhanced interfacial interaction and antioxidative behavior of novel halloysite nanotubes/silica hybrid supported antioxidant in styrene-butadiene rubber. Appl Surf Sci 441:798–806. https://doi.org/10.1016/j.apsusc.2018.02.086

    Article  CAS  Google Scholar 

  34. Fröhlich J, Niedermeier W, Luginsland HD (2005) The effect of filler–filler and filler–elastomer interaction on rubber reinforcement. Compos Part A: Appl S 36:449–460. https://doi.org/10.1016/j.compositesa.2004.10.004

    Article  CAS  Google Scholar 

  35. de Lima DR, da Rocha EB, D, de Sousa AM, F, da Costa ACA, Furtado CRG (2020) Effect of vulcanization systems on the properties of natural rubber latex films. Polym Bull 78:3943–3957. https://doi.org/10.1007/s00289-020-03291-4

    Article  CAS  Google Scholar 

  36. Zhang B, Chen S, Wang W, Tian M, Ning N, Zhang L (2020) Polyester (PET) fabrics coated with environmentally friendly adhesive and its interface structure and adhesive properties with rubber. Compos Sci Technol 195:108171–108177. https://doi.org/10.1016/j.compscitech.2020.108171

    Article  CAS  Google Scholar 

  37. Wang D, Tang Z, Liu Y, Guo B (2020) Crosslinking diene rubbers by using an inverse vulcanised co-polymer. Green Chem 22:7337–7342. https://doi.org/10.1039/d0gc02660c

    Article  CAS  Google Scholar 

  38. Dziemidkiewicz A, Anyszka R, Blume A, Maciejewska M (2020) Reaction mechanism of halogenated rubber crosslinking using a novel environmentally friendly curing system. Polym Test 84:106354–106368. https://doi.org/10.1016/j.polymertesting.2020.106354

    Article  CAS  Google Scholar 

  39. Meng Z, Li J, Zou Y et al (2022) Advanced montmorillonite modification by using corrosive microorganisms as an alternative filler to reinforce natural rubber. Appl Clay Sci 225:106534–106537. https://doi.org/10.1016/j.clay.2022.106534

    Article  CAS  Google Scholar 

  40. Zhang Z, Zhang Y, Li J, Hassan AA, Wang S (2021) Accelerated liquefaction of vulcanized natural rubber by thermo-oxidative degradation. Polym Bull 79:1767–1786. https://doi.org/10.1007/s00289-021-03580-6

    Article  CAS  Google Scholar 

  41. Nematollahi M, Jalali-Arani A, Modarress H (2018) High‐performance bio‐based poly(lactic acid)/natural rubber/epoxidized natural rubber blends: effect of epoxidized natural rubber on microstructure, toughness and static and dynamic mechanical properties. Polym Int 68:439–446. https://doi.org/10.1002/pi.5727

    Article  CAS  Google Scholar 

  42. Rosli NA, Ahmad I, Anuar FH, Abdullah I (2016) Mechanical and thermal properties of natural rubber-modified poly(lactic acid) compatibilized with telechelic liquid natural rubber. Polym Test 54:196–202. https://doi.org/10.1016/j.polymertesting.2016.07.021

    Article  CAS  Google Scholar 

  43. Wu W, Wang J (2018) Effect of KH550 on the Preparation and Compatibility of Carbon fibers Reinforced Silicone Rubber composites. SILICON 10:1903–1910. https://doi.org/10.1007/s12633-017-9700-4

    Article  CAS  Google Scholar 

  44. Meng X, Kang L, Guo X, Tang X, Liu L, Shen M (2023) Highly strong interface adhesion of Polyester Fiber Rubber Composite via Fiber Surface modification by Meta-Cresol/Formaldehyde Latex Dipping Emulsion. Polymers 15:1009. https://doi.org/10.3390/polym15041009

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was funded by the Key Programs of Hubei Province, China (2021BGD018), the Open Foundation of Hubei Provincial Key Laboratory of Green Materials for Light Industry, China (202307B04 and 202207B05). We also want to thank the Beijing Editor Bar Language Editing Company for providing language proofreading service by a native English speaker.

Author information

Authors and Affiliations

Authors

Contributions

Haodong Tan was involved in Conceptualization, Methodology, Validation, Formal analysis, Investigation, Data curation, Writing – original draft. Hongxin Liu and Shuyin Liu both played roles in Validation, Visualization. Qingting Liu was extensively involved, handling Conceptualization, Methodology, Investigation, Resources, Writing – Review & Editing, Supervision, Funding acquisition, Project administration. Xudong Fu and Rong Zhang was both involved in Methodology and Formal analysis. Shengfei Hu contributed through Methodology, Resources, Funding acquisition. Jun Yang was involved in Methodology and Supervision.

Corresponding authors

Correspondence to Qingting Liu or Jun Yang.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tan, H., Liu, H., Liu, S. et al. Microwave irradiated polyester staple fibers for natural rubber with excellent interface performance. J Polym Res 31, 17 (2024). https://doi.org/10.1007/s10965-023-03851-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10965-023-03851-y

Keywords

Navigation