Skip to main content
Log in

Fabrication of 2D nanomaterial reinforced co-continuous binary blend composites for thermal management and EMI shielding applications

  • Original Paper
  • Published:
Journal of Polymer Research Aims and scope Submit manuscript

Abstract

Polymer nanocomposites have garnered significant interest for electromagnetic interference (EMI) shielding applications due to their lightweight, anticorrosive and tunable properties. Employing the solution blending technique, we have developed a composite material comprising an 80wt% EMA (Ethylene–Methyl Acrylate) and 20wt% TPO (Thermoplastic Polyolefin) co-continuous blend. The incorporation of Reduced Graphene Oxide (RGO) as a conductive filler is achieved through precise confinement within the EMA phase of the polymer matrix. The selective placement of the RGO nanosheets within the EMA phase results in a dual percolation phenomenon, significantly lowering the electrical percolation threshold. A notable EMI SE value of -29.66 dB and electrical conductivity of 10–3 S/cm is acheived with the addition of 5wt% RGO. Further optimizing the composite, a loading of 15wt% RGO showcases an outstanding EMI SE of -39.06 dB. Moreover, this composite demonstrates commendable thermal conductivity of 0.75 W/m.K, alongside promising mechanical properties. The findings offer a promising avenue for the integration of this material in EMI-sensitive applications, particularly in the realms of stretchable and wearable electronics, offering effective thermal management and proficient microwave shielding capabilities.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig.  3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Data availability

All datas are available on request.

References

  1. Anjana AC (2023) Dual role of magnetic ionic liquid in EMI absorbing polymer composites of P(VDF-TrFE) and f-MWCNTs. J Polym Res 30:130. https://doi.org/10.1007/s10965-023-03460-9

    Article  CAS  Google Scholar 

  2. Qin Q, Hu Y, Guo S et al (2023) PVDF-based composites for electromagnetic shielding application: a review. J Polym Res 30:180. https://doi.org/10.1007/s10965-023-03506-y

    Article  CAS  Google Scholar 

  3. Ankur K, Jasomati N, Narayan CD (2022) A journey of thermoplastic elastomer nanocomposites for electromagnetic shielding applications: from bench to transitional research. Mater Adv 3:2670–2691. https://doi.org/10.1039/d1ma00989c

    Article  CAS  Google Scholar 

  4. Ma L, Hamidinejad M, Zhao B et al (2022) Layered Foam/Film Polymer Nanocomposites with Highly Efficient EMI Shielding Properties and Ultralow Reflection. Nanomicro Lett 14:1–8. https://doi.org/10.1007/s40820-021-00759-4

    Article  CAS  Google Scholar 

  5. Haoran C, Pan Y, Qiang C et al (2021) Ultrathin flexible poly(vinylidene fluoride)/MXene/silver nanowire film with outstanding specific EMI shielding and high heat dissipation. Adv Compos Hybrid Mater 4:505–513. https://doi.org/10.1007/s42114-021-00224-1

    Article  CAS  Google Scholar 

  6. Tian K, Hu D, Wei Q et al (2023) Recent progress on multifunctional electromagnetic interference shielding polymer composites. J Mater Sci Technol 134:106–131. https://doi.org/10.1016/j.jmst.2022.06.031

    Article  CAS  Google Scholar 

  7. Rayar A, Naveen CS, Onkarappa HS et al (2023) EMI shielding applications of PANI-Ferrite nanocomposite materials: A review. Synth Met 295:117338. https://doi.org/10.1016/j.synthmet.2023.117338

    Article  CAS  Google Scholar 

  8. Pan D, Yang G, Abo-Dief HM et al (2022) Vertically Aligned Silicon Carbide Nanowires/Boron Nitride Cellulose Aerogel Networks Enhanced Thermal Conductivity and Electromagnetic Absorbing of Epoxy Composites. Nanomicro Lett 14:118. https://doi.org/10.1007/s40820-022-00863-z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Junye C, Chuanbing L, Yingfei X et al (2022) Recent Advances in Design Strategies and Multifunctionality of Flexible Electromagnetic Interference Shielding Materials. Nanomicro Lett 14:80. https://doi.org/10.1007/s40820-022-00823-7

    Article  CAS  Google Scholar 

  10. Zhi X, Liu J, Bin ZH et al (2018) Simultaneous enhancements in electrical conductivity and toughness of selectively foamed polycarbonate/polystyrene/carbon nanotube microcellular foams. Compos B Eng 143:161–167. https://doi.org/10.1016/j.compositesb.2018.01.022

    Article  CAS  Google Scholar 

  11. Zhao H, Huang Y, Han Y et al (2022) Flexible and lightweight porous polyether sulfone/Cu composite film with bidirectional differential structure for electromagnetic interference shielding and heat conduction. Chem Eng J 440:135919. https://doi.org/10.1016/j.cej.2022.135919

    Article  CAS  Google Scholar 

  12. Jang D, Choi BH, Yoon HN et al (2022) Improved electromagnetic wave shielding capability of carbonyl iron powder-embedded lightweight CFRP composites. Compos Struct 286:115326. https://doi.org/10.1016/j.compstruct.2022.115326

    Article  CAS  Google Scholar 

  13. Yao B, Xu X, Li H et al (2021) Soft liquid-metal/elastomer foam with compression-adjustable thermal conductivity and electromagnetic interference shielding. Chem Eng J 410:128288. https://doi.org/10.1016/j.cej.2020.128288

    Article  CAS  Google Scholar 

  14. Govind KS, Nirmala RJ (2023) Flexible N-Doped Carbon Nanofiber-Polydimethylsiloxane Composite Containing La0.85Sr015CoO3−δ Nanoparticles for Green EMI Shielding. ACS Appl Nano Mater 6:6024–6035. https://doi.org/10.1021/acsanm.3c00382

    Article  CAS  Google Scholar 

  15. Poushali B, Sayan G, Tushar KD et al (2018) Superior electromagnetic interference shielding effectiveness and electro-mechanical properties of EMA-IRGO nanocomposites through the in-situ reduction of GO from melt blended EMA-GO composites. Compos B Eng 134:46–60. https://doi.org/10.1016/j.compositesb.2017.09.046

    Article  CAS  Google Scholar 

  16. Arunima D, Ranadip B, Sarbaranjan P et al (2020) Nanostructured cigarette wrapper encapsulated PDMS-RGO sandwiched composite for high performance EMI shielding applications. Polym Eng Sci 60:3056–3071. https://doi.org/10.1002/pen.25536

    Article  CAS  Google Scholar 

  17. Meng Y, Sharma S, Chung JS et al (2022) Enhanced electromagnetic interference shielding properties of immiscible polyblends with selective localization of reduced graphene oxide networks. Polymers (Basel) 14:967. https://doi.org/10.3390/polym14050967

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Ankur K, Palash D, Jasomati N et al (2023) Tailored distribution of 1D nanoparticles in co-continuous EMA/TPO flexible polymeric blends used as emerging materials for suppressing electromagnetic radiation. J Phys Chem Solids 179. https://doi.org/10.1016/j.jpcs.2023.111395

  19. Ma PC, Liu MY, Zhang H et al (2009) Enhanced electrical conductivity of nanocomposites containing hybrid fillers of carbon nanotubes and carbon black. ACS Appl Mater Interfaces 1:1090–1096. https://doi.org/10.1021/am9000503

    Article  CAS  PubMed  Google Scholar 

  20. Arief I, Biswas S, Bose S (2017) Graphene analogues as emerging materials for screening electromagnetic radiations. Nano-Struct Nano-Objects 11:94–101

    Article  CAS  Google Scholar 

  21. Ankur K, Palash D, Sangit P et al (2023) Preferential localization of conductive filler in ethylene-co-methyl acrylate/thermoplastic polyolefin polymer blends to reduce percolation threshold and enhanced electromagnetic radiation shielding over K band region. Polym Compos 44:1603–1616. https://doi.org/10.1002/pc.27191

    Article  CAS  Google Scholar 

  22. Berger EJ (1990) A method of determining the surface acidity of polymeric and metallic materials and its application to lap shear adhesion. J Adhes Sci Technol 4:373–391. https://doi.org/10.1163/156856190X00360

    Article  CAS  Google Scholar 

  23. Della VC, Deimichei A, Riccò T (1998) A multiliquid approach to the surface free energy determination of flame-treated surfaces of rubber-toughened polypropylene. J Adhes Sci Technol 12:1141–1180. https://doi.org/10.1163/156856198X00371

    Article  Google Scholar 

  24. Kol A, Kenig S, Naveh N (2020) Silane-Modified Graphene Oxide as a Compatibilizer and Reinforcing Nanoparticle for Immiscible PP/PA Blends. Polym Eng Sci 60:180–191. https://doi.org/10.1002/pen.25271

    Article  CAS  Google Scholar 

  25. Palash D, Ankur K, Jasomati N et al (2023) Facile preparation of self-healable and recyclable multilayered graphene-based nanocomposites for electromagnetic interference shielding applications. Colloids Surf A Physicochem Eng Asp 676:132244. https://doi.org/10.1016/j.colsurfa.2023.132244

    Article  CAS  Google Scholar 

  26. Krishnendu N, Suman KG, Palash D et al (2023) Fabrication of lightweight and biodegradable EMI shield films with selective distribution of 1D carbonaceous nanofiller into the co-continuous binary polymer matrix. J Mater Sci: Mater Electron 34:773. https://doi.org/10.1007/s10854-023-10212-4

    Article  CAS  Google Scholar 

  27. Ma RY, Yi SQ, Li J et al (2023) Highly efficient electromagnetic interference shielding and superior mechanical performance of carbon nanotube/polydimethylsiloxane composite with interface-reinforced segregated structure. Compos Sci Technol 232:109874. https://doi.org/10.1016/j.compscitech.2022.109874

    Article  CAS  Google Scholar 

  28. Krishnendu N, Suman KG, Ankur K et al (2022) Facile production of binary polymer/carbonic nanofiller-based biodegradable electromagnetic interference shield films with low electrical percolation threshold. Polym Eng Sci 62:3841–3857. https://doi.org/10.1002/pen.26151

    Article  CAS  Google Scholar 

  29. Jyoti J, Chauhan GS, Yang S et al (2023) Stretchable and lightweight MWCNTs/TPU composites films with excellent electromagnetic interference shielding and dynamic mechanical properties. J Polym Res 30. https://doi.org/10.1007/s10965-023-03690-x

  30. Suman K G, Tushar K D, Sayan G et al (2022) Carbon nanotubes and carbon nanofibers based co-continuous thermoplastic elastomeric blend composites for efficient microwave shielding and thermal management. Compos Part A Appl Sci Manuf 161. https://doi.org/10.1016/j.compositesa.2022.107118

  31. dos Anjos EGR, Brazil TR, de Melo Morgado GF et al (2023) Influence of MWCNT aspect ratio on the rheological, electrical, electromagnetic shielding, and mechanical properties of polycarbonate melt mixed nanocomposites. J Polym Res 30. https://doi.org/10.1007/s10965-023-03453-8

  32. Palash D, Ankur K, Kinsuk N, Das NC (2023) Recyclable and super-stretchable conductive elastomeric composites with a carbon nanostructure interconnected network structure for effective thermal management and excellent electromagnetic wave suppressor. Polymer-Plastics Technol Mater 62:889–908. https://doi.org/10.1080/25740881.2023.2169160

    Article  CAS  Google Scholar 

  33. Palash D, Ankur K, Arijit J et al (2023) Super-Stretchable, Self-Healing 2D MXene-Based Composites for Thermal Management and Electromagnetic Shielding Applications. ACS Appl Eng Mater 1:1186–1200. https://doi.org/10.1021/acsaenm.3c00016

    Article  CAS  Google Scholar 

  34. George G, Simon SM, Prakashan V et al (2018) Green and facile approach to prepare polypropylene/: In situ reduced graphene oxide nanocomposites with excellent electromagnetic interference shielding properties. RSC Adv 8:30412–30428. https://doi.org/10.1039/c8ra05007d

    Article  CAS  Google Scholar 

  35. Palash D, Ankur K, Suman KG et al (2023) Self-healable and super-stretchable conductive elastomeric nanocomposites for efficient thermal management characteristics and electromagnetic interference shielding. Synth Met 294:117304. https://doi.org/10.1016/j.synthmet.2023.117304

    Article  CAS  Google Scholar 

  36. Suman KG, Krishnendu SNC et al (2023) Combination effect of functionalized high aspect ratio carbonaceous nanofillers and carbon black on electrical, thermal conductivity, dielectric and EMI shielding behavior of co-continuous thermoplastic elastomeric blend composite films. Chem Eng J Adv 15:100505. https://doi.org/10.1016/j.ceja.2023.100505

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Narayan Chandra Das expresses gratitude to the Science and Engineering Research Board (SERB), the Department of Science and Technology (DST), Government of India, for their kind provision of financial assistance, as awarded under Grant No. CRG/2021/003146. The authors express their gratitude for the extensive help and resources offered by the Indian Institute of Technology (IIT) Kharagpur.

Funding

Science and Engineering Research Board (SERB), IN, CRG/2021/003146, Narayan Chandra Das.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Narayan Ch. Das.

Ethics declarations

Conflict of interest

We have no conflicts that need to be disclosed.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 587 KB)

Supplementary file2 (MP4 8603 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Katheria, A., Das, P., Ghosh, S.K. et al. Fabrication of 2D nanomaterial reinforced co-continuous binary blend composites for thermal management and EMI shielding applications. J Polym Res 30, 459 (2023). https://doi.org/10.1007/s10965-023-03843-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10965-023-03843-y

Keywords

Navigation