Skip to main content
Log in

Novel polypeptide composite fibrous scaffold with internal chemical boundary

  • Original Paper
  • Published:
Journal of Polymer Research Aims and scope Submit manuscript

Abstract

Cell migration determines the complete development of mammalian tissue and other pathological phenomena. To investigate the effect of chemical stimuli on such behavior, cells are triggered to translate by the concentration gradient of different molecules on 2D substrates in vitro. But to date unfortunately the polymeric scaffolds for cell migration in 3D environment with chemical stimuli have not been proposed and developed yet. Herein, a novel 3D composite scaffold with an internal chemical boundary is fabricated by electrospinning and mask-assisted electrospray so that the deposition of PBG-N3 particles is confined at specific area initially. The chemical boundary is subsequently formed after selective surface modification of the particles via click reaction. Using a fluorescent alkyne, the boundary of modified regions is clearly observed by fluorescence microscope. This innovative bio-material has the potential to serve as a promising scaffold for investigating the effect of chemical stimuli on cell migration and growth in 3D environment and further on to the application in tissue engineering.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1

Similar content being viewed by others

References

  1. Qu F, Guilak F, Mauck RL (2019) Cell migration: Implications for repair and regeneration in joint disease. Nat Rev Rheumatol. https://doi.org/10.1038/s41584-018-0151-0

    Article  PubMed  PubMed Central  Google Scholar 

  2. Li L, He Y, Zhao M, Jiang J (2013) Collective cell migration: Implications for wound healing and cancer invasion. Burns & Trauma. https://doi.org/10.4103/2321-3868.113331

    Article  Google Scholar 

  3. Xiao Y, Riahi R, Torab P, Zhang DD, Wong PK (2019) Collective cell migration in 3d epithelial wound healing. ACS Nano. https://doi.org/10.1021/acsnano.8b06305

    Article  PubMed  Google Scholar 

  4. Yamaguchi H, Wyckoff J, Condeelis J (2005) Cell migration in tumors. Curr Opinion Cell Biol. https://doi.org/10.1016/j.ceb.2005.08.002

  5. Binder C, Milleret V, Hall H, Eberli D, Lühmann T (2013) Influence of micro and submicro poly(lactic-glycolic acid) fibers on sensory neural cell locomotion and neurite growth. J Biomed Mater Res B: Applied Biomater. https://doi.org/10.1002/jbm.b.32931

  6. Huang J, Chen Y, Tang C, Fei Y, Wu H, Ruan D, Paul ME, Chen X, Yin Z, Heng BC, Chen W, Shen W (2019) The relationship between substrate topography and stem cell differentiation in the musculoskeletal system. Cell Mol Life Sci. https://doi.org/10.1007/s00018-018-2945-2

    Article  PubMed  PubMed Central  Google Scholar 

  7. Lo CM, Wang HB, Dembo M, Wang YL (2000) Cell movement is guided by the rigidity of the substrate. Biophys J. https://doi.org/10.1016/s0006-3495(00)76279-5

    Article  PubMed  PubMed Central  Google Scholar 

  8. Hale NA, Yang Y, Rajagopalan P (2010) Cell migration at the interface of a dual chemical-mechanical gradient. ACS Appl Mater Interfaces. https://doi.org/10.1021/am100346k

    Article  PubMed  Google Scholar 

  9. Dou J, Mao S, Li H, Lin J-M (2020) Combination stiffness gradient with chemical stimulation directs glioma cell migration on a microfluidic chip. Anal Chem. https://doi.org/10.1021/acs.analchem.9b03681

    Article  PubMed  Google Scholar 

  10. Průcha JJS, Justan I, Parák T, Gabrielová E, Hána K, Navrátil L (2019) High inductive magnetic stimuli and their effects on mesenchymal stromal cells, dendritic cells, and fibroblasts. Physiol Res. https://doi.org/10.33549/physiolres.934382

  11. Kunimatsu R, Gunji H, Tsuka Y, Yoshimi Y, Awada T, Sumi K, Nakajima K, Kimura A, Hiraki T, Abe T, Naoto H, Yanoshita M, Tanimoto K (2018) Effects of high-frequency near-infrared diode laser irradiation on the proliferation and migration of mouse calvarial osteoblasts. Lasers Med Sci. https://doi.org/10.1007/s10103-017-2426-0

    Article  PubMed  Google Scholar 

  12. Zhao S, Fan W, Guo X, Xue L, Berninger B, Salierno MJ, del Campo A (2018) Microenvironments to study migration and somal translocation in cortical neurons. Biomaterials. https://doi.org/10.1016/j.biomaterials.2017.11.042

  13. Duval K, Grover H, Han LH, Mou Y, Pegoraro AF, Fredberg J, Chen Z (2017) Modeling physiological events in 2d vs. 3d cell culture. Physiology (Bethesda). https://doi.org/10.1152/physiol.00036.2016

  14. Wang X, Ding B, Li B (2013) Biomimetic electrospun nanofibrous structures for tissue engineering. Mater Today. https://doi.org/10.1016/j.mattod.2013.06.005

  15. Goh A, Yeh C-C, Lei KF (2020) Visualization and quantification of 3d tumor cell migration under extracellular stimulation. ACS Applied Bio Mater. https://doi.org/10.1021/acsabm.9b01134

    Article  Google Scholar 

  16. Somaweera H, Ibraguimov A, Pappas D (2016) A review of chemical gradient systems for cell analysis. Anal Chim Acta. https://doi.org/10.1016/j.aca.2015.12.008

  17. Guo J, Huang Y, Jing X, Chen X (2009) Synthesis and characterization of functional poly(γ-benzyl-l-glutamate) (pblg) as a hydrophobic precursor. Polymer. https://doi.org/10.1016/j.polymer.2009.04.016

  18. Norberg O, Deng L, Aastrup T, Yan M, Ramström O (2011) Photo-click immobilization on quartz crystal microbalance sensors for selective carbohydrate−protein interaction analyses. Anal Chem. https://doi.org/10.1021/ac102781u

    Article  PubMed  Google Scholar 

  19. Wang Z-H, Chang Y-Y, Wu J-G, Lin C-Y, An H-L, Luo S-C, Tang TK, Su W-F (2018) Novel 3d neuron regeneration scaffolds based on synthetic polypeptide containing neuron cue. Macromol Biosci. https://doi.org/10.1002/mabi.201700251

  20. Lin CY, Luo SC, Yu JS, Chen TC, Su WF (2019) Peptide-based polyelectrolyte promotes directional and long neurite outgrowth. ACS Appl Bio Mater. https://doi.org/10.1021/acsabm.8b00697

    Article  PubMed  PubMed Central  Google Scholar 

  21. Chen T-C, She P-Y, Chen DF, Lu J-H, Yang C-H, Huang D-S, Chen P-Y, Lu C-Y, Cho K-S, Chen H-F, Su W-F (2019) Polybenzyl glutamate biocompatible scaffold promotes the efficiency of retinal differentiation toward retinal ganglion cell lineage from human-induced pluripotent stem cells. Int J Mol Sci. https://doi.org/10.3390/ijms20010178

  22. Nerger BA, Brun PT, Nelson CM (2020) Marangoni flows drive the alignment of fibrillar cell-laden hydrogels. Sci Adv. https://doi.org/10.1126/sciadv.aaz7748

    Article  PubMed  PubMed Central  Google Scholar 

  23. Dean RT, Hunt JV, Grant AJ, Yamamoto Y, Niki E (1991) Free radical damage to proteins The influence of the relative localization of radical generation, antioxidants, and target proteins. Free Radic Biol Med. https://doi.org/10.1016/0891-5849(91)90167-2

    Article  PubMed  Google Scholar 

  24. Garcia Garcia A, Hébraud A, Duval J-L, Wittmer CR, Gaut L, Duprez D, Egles C, Bedoui F, Schlatter G, Legallais C (2018) Poly(ε-caprolactone)/hydroxyapatite 3d honeycomb scaffolds for a cellular microenvironment adapted to maxillofacial bone reconstruction. ACS Biomater Sci Eng. https://doi.org/10.1021/acsbiomaterials.8b00521

    Article  PubMed  Google Scholar 

  25. Rana D, Mandal BM, Bhattacharyya SN (1996) Analogue Calorimetric Studies of Blends of Poly(vinyl ester)s and Polyacrylates. Macromolecules. https://doi.org/10.1021/ma950954n

    Article  Google Scholar 

  26. Russell TH, Edwards BJ, Khomami B (2014) Characterization of the Flory-Huggins interaction parameter of polymer thermodynamics. Europhys Lett. https://doi.org/10.1209/0295-5075/108/66003

    Article  Google Scholar 

  27. Ma TL, Yang SC, Cheng T, Chen MY, Wu JH, Liao SL, Chen WL, Su WF (2022) Exploration of biomimetic poly(γ-benzyl-l-glutamate) fibrous scaffolds for corneal nerve regeneration. J Mater Chem B. https://doi.org/10.1039/d2tb01250b

    Article  PubMed  Google Scholar 

  28. Chen P-H, Liao H-C, Hsu S-H, Chen R-S, Wu M-C, Yang Y-F, Wu C-C, Chen M-H, Su W-F (2015) A novel polyurethane/cellulose fibrous scaffold for cardiac tissue engineering. RSC Adv. https://doi.org/10.1039/C4RA12486C

    Article  PubMed  Google Scholar 

Download references

Acknowledgement

The authors are grateful for Ministry of Science and Technology, Taiwan for financial support (MOST 108-2221-E-002-027-MY3, 108-2813-C-002-043-E and 111-2221-E-002-029).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Meng-Fang Lin.

Ethics declarations

Conflict of interest

None.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 975 KB)

Supplementary file2 (DOCX 2133 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, SJ., Yu, TY., Yu, JS. et al. Novel polypeptide composite fibrous scaffold with internal chemical boundary. J Polym Res 30, 312 (2023). https://doi.org/10.1007/s10965-023-03695-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10965-023-03695-6

Keywords

Navigation