Skip to main content
Log in

Microwave assisted ring-opening polymerization of Ɛ-caprolactone using organic acids

  • Original Paper
  • Published:
Journal of Polymer Research Aims and scope Submit manuscript

Abstract

Microwave-assisted ring opening polymerization (ROP) of ε-caprolactone was performed using three different carboxylic acids as initiators. In order to determine the effect of the acidity strength of the initiators on the molecular weight and terminal group functionality, the acids from strongest to weakest, i.e. trifluoro acetic acid, acetic acid, and benzoic acid, were used as initiators. The microwave power was kept at 600 W. The chemical structure and thermal properties of the synthesized low molecular weight PCLs were determined using Fourier Transform Infrared Spectroscopy (FTIR), 1H Nuclear magnetic resonance (1H-NMR) spectroscopy, and differential scanning calorimetry (DSC). The molecular weight of the products was determined and compared using Light Scattering-Gel Permeation Chromatography (LS-GPC) and 1H-NMR spectroscopy. Their spectroscopic analyses showed that microwave-assisted polymerization is a useful technique in synthesizing the low molecular weight PCL without undesirable impurities. Melting points of the synthesized low molecular weight PCLs ranged from 52 °C to 63 °C, as determined by DSC. Their number-average molecular weights (Mn) and polydispersity index (PDI) were between 1.256—1.540 and 1.35—4.90 kDa, respectively. The Mn values obtained from the GPC were consistent with those calculated from 1H-NMR and matrix-assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF) techniques. These findings highlighted the significance of the microwave technique in obtaining low molecular weight PCL for drug delivery formulations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig.1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Data availability

The date that support the findings of this study are available on request from the corresponding author.

References

  1. Tian H, Wu F, Chen P, Peng X (2020) Fang H (2020) Microwave-assisted in situ polymerization of polycaprolactone/boron nitride composites with enhanced thermal conductivity and mechanical properties. Polym Int 69(7):635–643. https://doi.org/10.1002/pi.6000

    Article  CAS  Google Scholar 

  2. Yang G, Ma R, Zhang S, Liu Z, Pei D, Jin H et al (2022) Microwave-assisted in situ ring-opening polymerization of epsilon-caprolactone in the presence of modified halloysite nanotubes loaded with stannous chloride. RSC Adv 12(3):1628–1637. https://doi.org/10.1039/d1ra07469e

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Ünal S, Doğan O, Aktaş Y (2022) Paclitaxel-Loased Polycaprolactone nanoparticles for lung tumors; Formulation, Comprehensive in vitro characterization and release kinetic studies. J Fac Pharm Ankara 46:1009–1029. https://doi.org/10.33483/jfpau.1161238

  4. Jenkins M, Harrison K (2006) The effect of molecular weight on the crystallization kinetics of polycaprolactone. Polym Adv Technol 17(6):474–478. https://doi.org/10.1002/pat.733

    Article  CAS  Google Scholar 

  5. Sun IC, Eun DK, Na JH, Lee S, Kim IJ, Youn IC et al (2009) Heparin-coated gold nanoparticles for liver-specific CT imaging. Cent Eur Hist 15(48):13341–13347. https://doi.org/10.1002/chem.200902344

    Article  CAS  Google Scholar 

  6. Camacho KM, Menegatti S, Mitragotri S (2016) Low-molecular-weight polymer–drug conjugates for synergistic anticancer activity of camptothecin and doxorubicin combinations. Nanomedicine (Lond) 11(9):1139–1151. https://doi.org/10.2217/nnm.16.33

    Article  CAS  PubMed  Google Scholar 

  7. Stylianopoulos T (2013) EPR-effect: utilizing size-dependent nanoparticle delivery to solid tumors. Ther Deliv 4(4):421–423. https://doi.org/10.4155/tde.13.8

    Article  CAS  PubMed  Google Scholar 

  8. Witt S, Scheper T, Walter JG (2019) Production of polycaprolactone nanoparticles with hydrodynamic diameters below 100 nm. Eng Life Sci 19(10):658–665. https://doi.org/10.4155/tde.13.8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Storey RF, Sherman JW (2002) Kinetics and mechanism of the stannous octoate-catalyzed bulk polymerization of ε-caprolactone. Macromolecules 35(5):1504–1512. https://doi.org/10.1021/ma010986c

    Article  CAS  Google Scholar 

  10. Liao L, Liu L, Zhang C, He F, Zhuo R, Wan K (2002) Microwave‐assisted ring‐opening polymerization of ϵ‐caprolactone. J Polym Sci Part A: Polym Chem 40(11):1749–1755. https://doi.org/10.1002/pola.10256

  11. Limwanich W, Rakbamrung N, Meepowpan P, Funfuenha W, Kongsuk J, Punyodom W (2023) Solvent-free ring-opening polymerization of ε-caprolactone initiated by Mg (II), Sn (II), Zn (II), Al (III), and Sn (IV) derivatives: a comparative study. Reac Kinet Mech Cat 136(1):381–395. https://doi.org/10.1007/s11144-023-02354-7

    Article  CAS  Google Scholar 

  12. Funfuenha W, Punyodom W, Meepowpan P, Limwanich W (2023) Microwave-assisted solvent-free ring-opening polymerization of ε-caprolactone initiated by n-butyltin (IV) chlorides. Polym Bull 1–16. https://doi.org/10.1007/s00289-023-04720-w

  13. Hege CS, Schiller SM (2014) Non-toxic catalysts for ring-opening polymerizations of biodegradable polymers at room temperature for biohybrid materials. Green Chem 16(3):1410–1416. https://doi.org/10.1039/C3GC42044B

    Article  CAS  Google Scholar 

  14. Tan Y, Cai S, Liao L, Wang Q, Liu L (2009) Microwave-assisted ring-opening polymerization of ɛ-caprolactone in presence of hydrogen phosphonates. Polym J 41(10):849–854. https://doi.org/10.1295/polymj.PJ2009079

    Article  CAS  Google Scholar 

  15. Zhang C, Liao L, Gong SS (2007) Recent developments in microwave-assisted polymerization with a focus on ring-opening polymerization. Green Chem 9(4):303–314. https://doi.org/10.1039/B608891K

    Article  CAS  Google Scholar 

  16. Babaladimath G, Chapi S (2018) Microwave-assisted synthesis, characterization of electrical conducting and electrochemical xanthan gum-graft-polyaniline. J Mater Sci: Mater Electron 29:11159–11166. https://doi.org/10.1007/s10854-018-9201-2

    Article  CAS  Google Scholar 

  17. Persson PV, Schröder J, Wickholm K, Hedenström E, Iversen T (2004) Selective organocatalytic ring-opening polymerization: a versatile route to carbohydrate-functionalized poly (ε-caprolactones). Macromolecules 37(16):5889–5893. https://doi.org/10.1021/ma049562j

  18. Casas J, Persson PV, Iversen T, Córdova A (2004) Direct Organocatalytic Ring-Opening Polymerizations of Lactones. Adv Synth Catal 346(9–10):1087–1089. https://doi.org/10.1002/adsc.200404082

    Article  CAS  Google Scholar 

  19. Abdelrazek E, Hezma A, El-Khodary A, Elzayat A (2016) Spectroscopic studies and thermal properties of PCL/PMMA biopolymer blend. Egypt j basic appl sci 3(1):10–15. https://doi.org/10.1016/j.ejbas.2015.06.001

    Article  Google Scholar 

  20. Labet M, Thielemans W (2009) Synthesis of polycaprolactone: a review. Chem Soc Rev 38(12):3484–3504. https://doi.org/10.1039/B820162P

    Article  CAS  PubMed  Google Scholar 

  21. Song Y, Liu L, Weng X, Zhuo R (2003) Acid-initiated polymerization of ε-caprolactone under microwave irradiation and its application in the preparation of drug controlled release system. J Biomater Sci Polym Ed 14(3):241–253. https://doi.org/10.1163/156856203763572699

    Article  CAS  PubMed  Google Scholar 

  22. Yu Z, Liu L, Zhuo R (2003) Microwave‐improved polymerization of ϵ‐caprolactone initiated by carboxylic acids. J Polym Sci Part A: Polym Chem 41(1):13–21. https://doi.org/10.1002/pola.10546

  23. Bixler K, Calhoun G, Scholsky K, Stackman R (1990) Polymerization of epsilon-caprolactone in the presence of carboxylic acids. Polym Prepr 31(2):494–495

    CAS  Google Scholar 

  24. Oledzka E, Narine SS (2011) Organic acids catalyzed polymerization of ε-caprolactone: Synthesis and characterization. J Appl Polym Sci 119(4):1873–1882. https://doi.org/10.1002/app.32897

    Article  CAS  Google Scholar 

  25. Xu J, Song J, Pispas S, Zhang G (2014) Controlled/living ring‐opening polymerization of ε‐caprolactone with salicylic acid as the organocatalyst. J Polym Sci Part A: Polym Chem 52(8):1185–1192. https://doi.org/10.1002/pola.27104

  26. Chen T, Cai T, Jin Q, Ji J (2015) Design and fabrication of functional polycaprolactone. e-Polymers 15(1):3–13. https://doi.org/10.1515/epoly-2014-0158

  27. Amestoy H, Diego P, Meaurio E, Muñoz J, Sarasua J-R (2021) Crystallization behavior and mechanical properties of poly (ε-caprolactone) reinforced with barium sulfate submicron particles. Materials 14(9):2368. https://doi.org/10.3390/ma14092368

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Huang A, Jiang Y, Napiwocki B, Mi H, Peng X, Turng L-S (2017) Fabrication of poly (ε-caprolactone) tissue engineering scaffolds with fibrillated and interconnected pores utilizing microcellular injection molding and polymer leaching. RSC Adv 7(69):43432–442. https://doi.org/10.1039/C7RA06987A

  29. Liu J, Liu L (2004) Ring-opening polymerization of ε-caprolactone initiated by natural amino acids. Macromolecules 37(8):2674–2676. https://doi.org/10.1021/ma0348066

    Article  CAS  Google Scholar 

  30. Oledzka E, Sokolowski K, Sobczak M, Kolodziejski W (2011) α-Amino acids as initiators of ε-caprolactone and L. L-lactide polymerization Polym Int 60(5):787–793. https://doi.org/10.1002/pi.3016

    Article  CAS  Google Scholar 

  31. Báez JE, Martínez-Richa A, Marcos-Fernandez A (2005) One-step route to α-hydroxyl-ω-(carboxylic acid) polylactones using catalysis by decamolybdate anion. Macromolecules 38(5):1599–1608. https://doi.org/10.1021/ma0491098

    Article  CAS  Google Scholar 

  32. Kricheldorf HR, Eggerstedt S (1998) Macrocycles 2. Living macrocyclic polymerization of ε‐caprolactone with 2, 2‐dibutyl‐2‐stanna‐1, 3‐dioxepane as initiator. Macromol Chem Phys 199(2):283–90. First published: 16 December 1998

  33. Huang C-H, Wang F-C, Ko B-T, Yu T-L, Lin C-C (2001) Ring-opening polymerization of ε-caprolactone and L-lactide using aluminum thiolates as initiator. Macromolecules 34(3):356–361. https://doi.org/10.1021/ma0014719

    Article  CAS  Google Scholar 

  34. Chapi S (2021) Influence of Co2+ on the structure, conductivity, and electrochemical stability of poly (ethylene oxide)-based solid polymer electrolytes: energy storage devices. J Electron Mater 50(3):1558–1571. https://doi.org/10.1007/s11664-020-08706-6

    Article  CAS  Google Scholar 

  35. Hayashi T (1994) Biodegradable polymers for biomedical uses. Prog Polym Sci 19(4):663–702. https://doi.org/10.1016/0079-6700(94)90030-2

    Article  CAS  Google Scholar 

  36. Yu Z, Liu L (2004) Effect of microwave energy on chain propagation of poly (ε-caprolactone) in benzoic acid-initiated ring opening polymerization of ε-caprolactone. Eur Polym J 40(9):2213–2220. https://doi.org/10.1016/j.eurpolymj.2004.05.007

    Article  CAS  Google Scholar 

  37. Dzienia A, Maksym P, Tarnacka M, Grudzka-Flak I, Golba S, Zięba A et al (2017) High pressure water-initiated ring opening polymerization for the synthesis of well-defined α-hydroxy-ω-(carboxylic acid)polycaprolactones. Green Chem 19(15):3618–3627. https://doi.org/10.1016/j.eurpolymj.2004.05.007

    Article  CAS  Google Scholar 

  38. Chen H-L, Li L-J, Ou-Yang W-C, Hwang JC, Wong W-Y (1997) Spherulitic crystallization behavior of poly (ε-caprolactone) with a wide range of molecular weight. Macromolecules 30(6):1718–1722. https://doi.org/10.1021/ma960673v

    Article  CAS  Google Scholar 

  39. Tuba F, Olah L, Nagy P (2014) Towards the understanding of the molecular weight dependence of essential work of fracture in semi-crystalline polymers: A study on poly (ε-caprolactone). Express Polym Lett 8(11). https://doi.org/10.3144/expresspolymlett.2014.88

  40. Barbier-Baudry D, Brachais CH, Cretu A, Loupy A, Stuerga D (2002) An Easy Way Toward ε-Caprolactone Macromonomers by Microwave Irradiation Using Early Lanthanide Halides as Catalysts. Macromol Rapid Commun 23(3):200–204

Download references

Funding

No funding was received to assist with the preparation of this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Muge Sennaroglu Bostan.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ahmadova, I., Tapdiqov, S., Eroglu, M.S. et al. Microwave assisted ring-opening polymerization of Ɛ-caprolactone using organic acids. J Polym Res 30, 291 (2023). https://doi.org/10.1007/s10965-023-03678-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10965-023-03678-7

Keywords

Navigation