Skip to main content
Log in

Investigation of the effect on the adsorption behavior of poly(aspartic acid) and poly(glutamic acid)on Fe (110) surface by DFT and MD

  • Original Paper
  • Published:
Journal of Polymer Research Aims and scope Submit manuscript

Abstract

One of the major characteristics of high-molecular-weight polymerization is its poor water solubility. Because of the significant impact this situation has on the usage of corrosion inhibitors, it is imperative to research low-molecular-level green amino acid corrosion inhibitors, particularly at the molecular level. Therefore, in this paper, we studied the effect of density functional theory (DFT) and molecular dynamics (MD) on the adsorption performance of aspartic acid (Asp) and glutamic acid (Glu) on the iron surface. We theoretically evaluated the adsorption energy by analyzing the formation of chemisorption of amino acid molecules with different polymerization degrees through electron transfer. The results showed that the optimum degree of polymerization was 8 for Asp that of Glu was 6, because the peptide bond and carboxylic acid root were attached to the d orbital of the iron atom. The adsorption energies at the optimum degree of polymerization were -304.457939 kcal/mol and -286.312175 kcal/mol for Asp and Glu, respectively, which demonstrated that Asp is a better corrosion inhibitor than Glu. This paper provides a theoretical approach for the design of subsequent corrosion inhibitors and the selection of polymerization degree.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data availability

The authors acknowledge that data supporting the results of this study are available in the article and in supplementary materials.

References

  1. Singh A, Ansari KR, Bedi P, Pramanik T, Ali IH, Lin Y, Banerjeeand P, Zamindar S (2023) J Phys Chem Solids. https://doi.org/10.1016/j.jpcs.2022.111064

    Article  Google Scholar 

  2. Gholivand K, Faraghi M, Mirzaei-Saatlo M, Badalkhani-Khamseh F, Salimi G, Barzegari A (2023) J Mol Struct 1274:20. https://doi.org/10.1016/j.molstruc.2022.134505

    Article  CAS  Google Scholar 

  3. Nourpour P, Hamdi M, Taghipour S, Vafaee M, Heydarzadeh A (2023) Thin Solid Films 766:19. https://doi.org/10.1016/j.tsf.2022.139658

    Article  CAS  Google Scholar 

  4. Akrom M, Saputro AG, Maulana AL, Ramelan A, Nuruddin A, Rustad S, Dipojono HK (2023) Appl Surf Sci. https://doi.org/10.1016/j.apsusc.2022.156319

    Article  Google Scholar 

  5. Dai J, An X (2023) Int J Electroch Sci. https://doi.org/10.1016/j.ijoes.2023.100080

    Article  Google Scholar 

  6. Gece G (2008) Corros Sci 50:2981–2992. https://doi.org/10.1016/j.corsci.2008.08.043

    Article  CAS  Google Scholar 

  7. Huang L, Li H-J, Wu Y-C (2023) J Environ Manag. https://doi.org/10.1016/j.jenvman.2023.117531

    Article  Google Scholar 

  8. Ihamdane R, Tiskar M, Outemsaa B, Zelmat L, Dagdag O, Berisha A, Berdimurodov E, Ebenso EE, Chaouch A (2023) Arab J Sci Eng. https://doi.org/10.1007/s13369-023-07693-0

    Article  Google Scholar 

  9. Li B, Wang W, Chen L, Zheng X, Gong M, Fan J, Tang L, Shi Q, Zhu G (2023) Int J Electrochem Sci. https://doi.org/10.1016/j.ijoes.2023.100082

    Article  Google Scholar 

  10. Liu P, Dai S, Lan J, Lu H, Wang B, Zhu Y (2023) J Mol Model. https://doi.org/10.1007/s00894-022-05436-w

    Article  PubMed  PubMed Central  Google Scholar 

  11. Obot IB, Kaya S, Kaya C, Tüzün B (2015) Res Chem Intermed 42:4963–4983. https://doi.org/10.1007/s11164-015-2339-0

    Article  CAS  Google Scholar 

  12. Tan L, Li J, Zeng X (2023) Materials (Basel, Switzerland). https://doi.org/10.3390/ma16062148

    Article  PubMed  PubMed Central  Google Scholar 

  13. Verma C, Hussain CM, Quraishi MA, Alfantazi A (2023) Adv Colloid Interface Sci. https://doi.org/10.1016/j.cis.2022.102822

    Article  PubMed  Google Scholar 

  14. Wang G, Li W, Wang X, Yuan X, Yang H (2023) Mater Chem Phys. https://doi.org/10.1016/j.matchemphys.2022.126956

    Article  Google Scholar 

  15. Wang Q, Wang R, Zhang Q, Zhao C, Zhou X, Zheng H, Zhang R, Sun Y, Yan Z (2023) Molecules (Basel, Switzerland). https://doi.org/10.3390/molecules28062832

    Article  PubMed  PubMed Central  Google Scholar 

  16. Wang Q, Wu X, Zheng H, Liu L, Zhang Q, Zhang A, Yan Z, Sun Y, Li Z, Li X (2023) J Build Eng. https://doi.org/10.1016/j.jobe.2022.105568

    Article  Google Scholar 

  17. Wang Y, Qiang Y, Zhi H, Ran B, Zhang D (2023) J Ind Eng Chem 117:422–433. https://doi.org/10.1016/j.jiec.2022.10.030

    Article  CAS  Google Scholar 

  18. Al Jahdaly BA (2023) Biomass Convers Biorefin. https://doi.org/10.1007/s13399-023-03765-1

    Article  Google Scholar 

  19. Kadhim MM, Alabboodi KO, Hachim SK, Abdullaha SA, Taban TZ, Rheima AM (2023) J Mol Model. https://doi.org/10.1007/s00894-022-05424-0

    Article  PubMed  Google Scholar 

  20. Li E, Li Y, Liu S, Yao P (2023) Colloids Surf a-Physicochem Eng Aspects. https://doi.org/10.1016/j.colsurfa.2022.130541

    Article  Google Scholar 

  21. Li H, Kang Z, Zhang K, Gong S, Zhao X, Yan Z, Wang S, Song C (2023) Environ Res 227:115754–115754. https://doi.org/10.1016/j.envres.2023.115754

    Article  CAS  PubMed  Google Scholar 

  22. Naundorf T, Seddig T, Ruf E, Ballentin L, Kipphardt H, Maison W (2023) Amino Acids. https://doi.org/10.1007/s00726-023-03260-x

    Article  PubMed  PubMed Central  Google Scholar 

  23. Simovic A, Stevanovic S, Milovanovic B, Etinski M, Bajat JB (2023) J Solid State Electrochem. https://doi.org/10.1007/s10008-023-05433-w

    Article  Google Scholar 

  24. Liu AM, Guan WX, Zhao XD, Ren XF, Liang XY, Gao LG, Li YQ, Ma TL (2021) Appl Surf Sci 541:9. https://doi.org/10.1016/j.apsusc.2020.148570

    Article  CAS  Google Scholar 

  25. Kadhim MM, Khadom AA, Rheima AM, Almashhadani HA (2023) J Mole Liq. https://doi.org/10.1016/j.molliq.2023.121538

    Article  Google Scholar 

  26. Salim MM, Azab MM, Abo-Riya MA, Abd-El-Raouf M, El Basiony NM (2023) J Mol Struct. https://doi.org/10.1016/j.molstruc.2022.134357

    Article  Google Scholar 

  27. Shafek SH, Ghiaty EA, El Basiony NM, Badr EA, Shaban SM (2023) Z Phys Chem-Int J Res Phys Chem Chem Phys 237:1–33. https://doi.org/10.1515/zpch-2022-0135

    Article  CAS  Google Scholar 

  28. Vernack E, Zanna S, Seyeux A, Costa D, Chiter F, Tingaut P, Marcus P (2023) Corros Sci. https://doi.org/10.1016/j.corsci.2022.110854

    Article  Google Scholar 

  29. Yousef TA, Alhamzani AG, Abou-Krisha MM, Kumar CBP, Raghu MS, Kumar KY, Prashanth MK, Jeon B-H (2023) J Mol Struct. https://doi.org/10.1016/j.molstruc.2022.134603

    Article  Google Scholar 

  30. Ahmed YM, Ashmawy AM, Abbas AA, Mohamed GG (2023) Appl Organomet Chem. https://doi.org/10.1002/aoc.7015

    Article  Google Scholar 

  31. Alahiane M, Oukhrib R, Albrimi YA, Abou Oualid H, Idouhli R, Nahle A, Berisha A, Azzallou NZ, Hamdani M (2023) Appl Surf Sci. https://doi.org/10.1016/j.apsusc.2022.155755

    Article  Google Scholar 

  32. Benchikh A, Belkacemi S, Maizia R, Mezian K, Makhloufi L, Saidani B (2023) J Mol Struct. https://doi.org/10.1016/j.molstruc.2022.134562

    Article  Google Scholar 

  33. Chaouiki A, Al Zoubi W, Ko YG (2023) J Magnes Alloys 11:301–316. https://doi.org/10.1016/j.jma.2022.04.005

    Article  CAS  Google Scholar 

  34. Daoudi W, Guo L, Azzouzi M, Pooventhiran T, Boutaybi AE, Lamghafri S, Oussaid A, El Aatiaoui A (2023) J Adhes Sci Technol. https://doi.org/10.1080/01694243.2023.2175296

    Article  Google Scholar 

  35. El-Asri A, Rguiti MM, Jmiai A, Oukhrib R, Bourzi H, Lin Y, El Issami S (2023) J Taiwan Inst Chem Eng. https://doi.org/10.1016/j.jtice.2022.104633

    Article  Google Scholar 

  36. Fernandes CM, Costa ARP, Leite MC, Martins V, Lee H-S, da CS Boechat F, de Souza MC, Batalha PN, Lgaz H, Ponzio EA (2023) J Mol Liq. https://doi.org/10.1016/j.molliq.2023.121299

    Article  Google Scholar 

  37. Gomez B, Likhanova NV, Aguilar MAD, Olivares O, Hallen JM, Martinez-Magadan JA (2005) J Phys Chem A 109:8950–8957. https://doi.org/10.1021/jp052188k

    Article  CAS  PubMed  Google Scholar 

  38. Ituen E, Mkpenie V, Dan E (2019) Surf Interfaces 16:29–42. https://doi.org/10.1016/j.surfin.2019.04.006

    Article  CAS  Google Scholar 

  39. Kokalj A (2013) Corros Sci 70:294–297. https://doi.org/10.1016/j.corsci.2013.01.031

    Article  CAS  Google Scholar 

  40. Legut D, Kadzielawa AP, Panek P, Markova K, Vanova P, Konecna K, Langova S (2021) Corros Sci. https://doi.org/10.1016/j.corsci.2021.109716

    Article  Google Scholar 

  41. Wang Q, Yin D, Gao B, Tian S, Sun X, Liu M, Zhang S, Tan B (2020) Colloids Surf a-Physicochem Eng Aspects. https://doi.org/10.1016/j.colsurfa.2019.124286

    Article  Google Scholar 

  42. Liu ZY, Wang D, Li DT, Wang HQ (2022) Comput Theor Chem 1214:6. https://doi.org/10.1016/j.comptc.2022.113759

    Article  CAS  Google Scholar 

  43. Saha SK, Ghosh P, Hens A, Murmu NC, Banerjee P (2015) Physica E-Low-Dimens Syst Nanostruct 66:332–341. https://doi.org/10.1016/j.physe.2014.10.035

    Article  CAS  Google Scholar 

  44. Yousef TA, Alhamzani AG, Abou-Krisha MM, Kumar CBP, Raghu MS, Kumar KY, Prashanth MK, Jeon BH (2023) J Mol Struct 1275:14. https://doi.org/10.1016/j.molstruc.2022.134603

    Article  CAS  Google Scholar 

  45. Zhang J, Niu LW, Zhu FM, Li CJ, Du M (2013) J Surfactants Deterg 16:947–956. https://doi.org/10.1007/s11743-013-1515-8

    Article  CAS  Google Scholar 

  46. Yang M, Wang JY, Liu LW, Tang N, Zhang H (2021) Trans Inst Met Finish 99:306–312. https://doi.org/10.1080/00202967.2021.1952790

    Article  CAS  Google Scholar 

  47. Xu XT, Xu HW, Cui YF, Li W, Wang Y, Zhang XY (2022) J Mol Model. https://doi.org/10.1007/s00894-022-05038-6

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors are grateful for funding from the National Natural Science Foundation of China (51974344) and the Key Program of National Natural Science Foundation of China (52130401).

Author information

Authors and Affiliations

Authors

Contributions

Da Wu: Conceptualization, Methodology, Data curation, Writing—original draft. Dexin Liu: Writing—original draft, Conceptualization, Investigation, Methodology, Software. Hui Luo: Conceptualization, Supervision, Validation. Han Zhao: Funding acquisition, Project Administration, Supervision, Validation. Yeliang Dong: Conceptualization, Formal analysis, Preparation. Neema Adnan Massawe: Editing – original final draft.

Corresponding author

Correspondence to Dexin Liu.

Ethics declarations

Competing interest

There are no conflicts to declare.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 123 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wu, D., Liu, D., Luo, H. et al. Investigation of the effect on the adsorption behavior of poly(aspartic acid) and poly(glutamic acid)on Fe (110) surface by DFT and MD. J Polym Res 30, 272 (2023). https://doi.org/10.1007/s10965-023-03663-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10965-023-03663-0

Keywords

Navigation