Skip to main content
Log in

Highly efficient one-pot synthesis of anhydride-riched terpolymers from radical dual-alternating strategy

  • Original Paper
  • Published:
Journal of Polymer Research Aims and scope Submit manuscript

Abstract

A novel functional terpolymer was prepared by one-pot radical terpolymerization of cis-1,3-pentadiene (CP), maleic anhydride (MAH), and styrene (St) using Azobisisobutyronitrile (AIBN) and Benzoyl peroxide (BPO) as initiators in Tetrahydrofuran (THF) solvent. Although the charge transfer complexes between MAH and two electron-rich comnomers have low concentrations in the feed (Keq = 0.71 L/mol at 25 °C in THF), the two complexes are more reactive than the free monomers by kinetic analysis. And all attempts to homopolymerize the single monomers and to copolymerize the two donor-monomers St/CP under our given conditions failed. Therefore, Such terpolymerization can be described as “complex” mechanisms in the state of near-binary copolymerization of [MAH¦St] and [MAH¦CP] complexes, and the constants of complex-radical terpolymerization, complex formation, and some kinetic parameters for the monomer systems were studied by Ultraviolet spectrum (UV), Nuclear magnetic resonance (NMR), Kelen-Tüdöş and Fineman-Ross methods, respectively. And as the similar copolymerization reactivity of the two intermediates, the terpolymer displayed the characteristics of “gradient” distribution with high molecular weight Mns (50–95 kg/mol) and adjustable Tgs. Their terpolymerization resulted in a (MAH-alt-St)-ran-(MAH-alt-CP) sequence as a consequence of the selective alternating copolymerization between MAH and CP/St, the lack of copolymerization between St and CP, as well as no homopolymerization of MAH or St or CP under our conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Scheme 1
Scheme 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Scheme 3

Similar content being viewed by others

Data Availability

Data reported in this work will be made available at reasonable request.

References

  1. Zhang Z, You Y-Z, Wu D-C et al (2015) Syntheses of sequence-controlled polymers via consecutive multicomponent reactions. Macromolecules 48(11):3414–3421. https://doi.org/10.1021/acs.macromol.5b00463

    Article  CAS  Google Scholar 

  2. Hall HK Jr, Padias AB (1990) Zwitterion and diradical tetramethylenes as initiators of “charge-transfer” polymerizations. Acc Chem Res 23(1):3–9. https://doi.org/10.1021/ar00169a002

    Article  CAS  Google Scholar 

  3. Hall HK, Padias AB (1997) Bond forming initiation of “charge-transfer” polymerizations and the accompanying cycloadditions. Acc Chem Res 30(8):322–329. https://doi.org/10.1021/ar950222f

    Article  CAS  Google Scholar 

  4. Satoh K, Ishizuka K, Hamada T et al (2019) Construction of sequence-regulated vinyl copolymers via iterative single vinyl monomer additions and subsequent metal-catalyzed step-growth radical polymerization. Macromolecules 52(9):3327–3341. https://doi.org/10.1021/acs.macromol.9b00676

    Article  CAS  Google Scholar 

  5. Gutekunst WR, Hawker CJ (2015) A general approach to sequence-controlled polymers using macrocyclic ring opening metathesis polymerization. J Am Chem Soc 137(25):8038–8041. https://doi.org/10.1021/jacs.5b04940

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Soejima T, Satoh K, Kamigaito M (2016) Sequence-regulated vinyl copolymers with acid and base monomer units via atom transfer radical addition and alternating radical copolymerization. Polym Chem 7(29):4833–4841. https://doi.org/10.1039/C6PY00965D

    Article  CAS  Google Scholar 

  7. Hibi Y, Tokuoka S, Terashima T et al (2011) Design of AB divinyl “template monomers” toward alternating sequence control in metal-catalyzed living radical polymerization. Polym Chem 2(2):341–347. https://doi.org/10.1039/C0PY00252F

    Article  CAS  Google Scholar 

  8. Kametani Y, Ouchi M (2020) Saccharin-pendant methacrylamide as a unique monomer in radical copolymerization: peculiar alternating copolymerization with styrene. Polym Chem 11(40):6505–6511. https://doi.org/10.1039/D0PY01079K

    Article  CAS  Google Scholar 

  9. Lu J, Li J, Wang J et al (2020) Precision AABB-type cyclocopolymers via alternating cyclocopolymerization of disiloxane-tethered divinyl monomers. Polym Chem 11(6):1171–1176. https://doi.org/10.1039/C9PY01748H

    Article  CAS  Google Scholar 

  10. Zhou Y, Liu Q, Zhang Z et al (2017) Toward alternating copolymerization of maleimide and vinyl acetate driven by hydrogen bonding. Polym Chem 8(44):6909–6916. https://doi.org/10.1039/C7PY01399J

    Article  CAS  Google Scholar 

  11. Parent JS, Thom DJ, White G et al (2001) Thermal stability of brominated poly(isobutylene-co-isoprene). J Polym Sci, Part A: Polym Chem 39(12):2019–2026. https://doi.org/10.1002/pola.1177

    Article  CAS  Google Scholar 

  12. Satoh K, Matsuda M, Nagai K et al (2010) AAB-sequence living radical chain copolymerization of naturally occurring limonene with maleimide: An end-to-end sequence-regulated copolymer. J Am Chem Soc 132(29):10003–10005. https://doi.org/10.1021/ja1042353

    Article  CAS  PubMed  Google Scholar 

  13. Matyjaszewski K (2011) Architecturally complex polymers with controlled heterogeneity. Science 333(6046):1104–1105. https://doi.org/10.1126/science.1209660

    Article  CAS  PubMed  Google Scholar 

  14. Srichan S, Chan-Seng D, Lutz J-F (2012) Influence of strong electron-donor monomers in sequence-controlled polymerizations. ACS Macro Lett 1(5):589–592. https://doi.org/10.1021/mz3001513

    Article  CAS  PubMed  Google Scholar 

  15. Lutz J-F (2014) Aperiodic copolymers. ACS Macro Lett 3(10):1020–1023. https://doi.org/10.1021/mz5004823

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Gleede T, Markwart JC, Huber N et al (2019) Competitive copolymerization: Access to aziridine copolymers with adjustable gradient strengths. Macromolecules 52(24):9703–9714. https://doi.org/10.1021/acs.macromol.9b01623

    Article  CAS  Google Scholar 

  17. Liu K, Li A, Yang Z et al (2019) Synthesis of strictly alternating copolymers by living carbanionic copolymerization of diphenylethylene with 1,3-pentadiene isomers. Polym Chem 10(14):1787–1794. https://doi.org/10.1039/C9PY00008A

    Article  CAS  Google Scholar 

  18. Liu K, Ren L, He Q et al (2016) Synthesis of copolymers by living carbanionic alternating copolymerization. Macromol Rapid Commun 37(9):752–758. https://doi.org/10.1002/marc.201600009

    Article  CAS  PubMed  Google Scholar 

  19. Liu K, Sun M, Xie F et al (2020) 1: 1 alternating and 1: 2 sequence-controlled radical copolymerization of 1,3-pentadiene isomers with maleic anhydride/N-phenylalkyl maleimide. Polym Chem 11(3):675–681. https://doi.org/10.1039/C9PY01642B

    Article  CAS  Google Scholar 

  20. Rzaev ZMO (2000) Complex-radical alternating copolymerization. Prog Polym Sci 25(2):163–217. https://doi.org/10.1016/S0079-6700(99)00027-1

    Article  CAS  Google Scholar 

  21. Benesi HA, Hildebrand JH (1949) A Spectrophotometric Investigation of the Interaction of Iodine with Aromatic Hydrocarbons. J Am Chem Soc 71(8):2703–2707. https://doi.org/10.1021/ja01176a030

    Article  CAS  Google Scholar 

  22. Wang R, Yu Z (2007) Validity and Reliability of Benesi-Hildebrand Method. Acta Phys Chim Sin 23(9):1353–1359. https://doi.org/10.1016/S1872-1508(07)60071-0

    Article  CAS  Google Scholar 

  23. Scott RL (1956) Some comments on the Benesi-Hildebrand equation. Recl Trav Chim Pays-Bas 75(7):787–789. https://doi.org/10.1002/recl.19560750711

    Article  CAS  Google Scholar 

  24. Hu Z, Zhang Z (2006) “Gradient” polymer prepared by complex-radical terpolymerization of styrene, maleic anhydride, and N-vinyl pyrrolidone via γ-ray irradiation by use of a RAFT process: Synthesis, mechanism, and characterization. Macromolecules 39(4):1384–1390. https://doi.org/10.1021/ma051997z

    Article  CAS  Google Scholar 

  25. Nayak PL, Lenka S, Nayak PK (1992) Calculation of reactivity ratio of resin copolymers derived from substituted acetophenones using Kelen-Tüdos equation. J Appl Polym Sci 45(4):655–661. https://doi.org/10.1002/app.1992.070450412

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We are gratful to YueYang BaLing Petrochemical Chem. Co. Ltd. and ShangHai Petrochemical Chem. Co. Ltd. and for PD isomers and other polymer-grade reagents as gifts. The authors thank JinKui Xia, HongWen Liang, Xu Qiu, Yijiao Chen and JianSong Fu for helpful discussion. We gratefully acknowledge the financial support of Changsha Municipal Natural Science Foundation (kq2208219), Educational Commission of Hunan Province of China (No. 20B263, 20B258, 20B268), Natural Science Foundation of Hunan Province of China (No.2019JJ50213, No.2022JJ30279) and National Natural Science Foundation of China (No. 21901070).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jundong Xu or Lijun Li.

Ethics declarations

Competing interest

The authors declare no competing financial interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, K., Xiong, Q., Gu, Z. et al. Highly efficient one-pot synthesis of anhydride-riched terpolymers from radical dual-alternating strategy. J Polym Res 30, 192 (2023). https://doi.org/10.1007/s10965-023-03538-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10965-023-03538-4

Keywords

Navigation