Skip to main content

Advertisement

Log in

Restrained dielectric loss and elevated breakdown strength in Si/PVDF composites by engineering SiO2 shell as an interlayer

  • Original Paper
  • Published:
Journal of Polymer Research Aims and scope Submit manuscript

Abstract

As the electronic industry develops rapidly, nowadays, flexible dielectric materials with excellent integrated dielectric performances including high dielectric permittivity (ɛ) and breakdown strength (Eb) but low loss, are highly pursued. In this work, to concurrently improve the ɛ and Eb but restrain the loss of original Si/polyvinylidene fluoride (PVDF) composites, the core@shell structured Si@SiO2 particles first were produced via high temperature oxidation process, and then incorporated into the PVDF to generate morphology-dependent composites with high-ɛ and Eb but low loss. The dielectric properties of the composites were investigated in terms of the filler types and concentrations, frequency, and theoretically fitted using the Havriliak-Negami equation to reveal the SiO2 shell’ role in affecting the polarization mechanism. When compared to pure Si/PVDF at high filler loadings, remarkably inhibited dielectric loss and conductivity as well as enhanced Eb concurrently can be achieved in the Si@SiO2/PVDF composites still harvesting a high-ɛ. This is because the insulating SiO2 shell not only effectively prevents the raw Si particles from direct physical contact, but also greatly impedes the long-range charge carrier migration via raising energy barrier subsequently leading to obviously enhanced Eb. Moreover, the dielectric loss and conductivity apparently decrease with increasing the SiO2 shell thickness due to its pronounced suppression effect. The prepared Si@SiO2/PVDF with a high Eb and ɛ but low loss, show bright future uses in micro-electronic devices used for high-voltage purposes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Data availability

The data that support the findings of this study are available on request from the corresponding author, [W.Y. Zhou],upon reasonable request.

References

  1. Zha JW, Zheng MS, Fan BH, Dang ZM (2021) Polymer-based dielectrics with high permittivity for electric energy storage: A review. Nano Energy 89:1–20

    Article  Google Scholar 

  2. Li B, Polizos G, Manias E (2022) Interfacial effects on the dielectric properties of elastomer composites and composites. Dyn Compos Mater. Springer. Cham 225–249

  3. Li B, Randall CA, Manias E (2022) Polarization mechanism underlying strongly enhanced dielectric permittivity in polymer composites with conductive fillers. J Phys Chem C 126(17):7596–7604

    Article  CAS  Google Scholar 

  4. Li B, Sarkarat M, Baker A, Manias E, Randall CA (2021) Interfacial effects on the dielectric properties of elastomer/carbon-black/ceramic composites. MRS Adv 6(9):247–251

    Article  Google Scholar 

  5. Yuan MX, Zhang G, Li B, Chung TCM, Rajagopalan R, Lanagan MT (2020) Thermally stable low-loss polymer dielectrics enabled by attaching cross-linkable antioxidant to polypropylene. ACS Appl Mater Interfaces 12(12):14154–14164

    Article  CAS  PubMed  Google Scholar 

  6. Yuan MX, Li B, Zhang SH, Rajagopalan R, Lanagan MT (2020) High-Field dielectric properties of oriented poly (vinylidene fluoride-co-hexafluoropropylene): structure-dielectric property relationship and implications for energy storage applications. ACS Appl Polym Mater 2(3):1356–1368

    Article  CAS  Google Scholar 

  7. Wang P, Zhang XM, Duan W, Teng W, Liu YB, Xie Q (2021) Superhydrophobic flexible supercapacitors formed by integrating hydrogel with functional carbon nanomaterials. Chin J Chem 39(5):1153–1158

    Article  CAS  Google Scholar 

  8. Wang P, Li ZQ, Xie Q, Duan W, Zhang XC, Han HL (2021) A passive anti-icing strategy based on a superhydrophobic mesh with extremely low ice adhesion strength. J Bionic Eng 18(1):55–64

    Article  Google Scholar 

  9. Wang ZD, Wang XZ, Wang SL, He JY, Zhang T, Wang J, Wu GL (2021) Simultaneously enhanced thermal conductivity and dielectric breakdown strength in sandwich AlN/epoxy composites. Nanomater-Basel 11(8):1898

    Article  CAS  Google Scholar 

  10. Wang ZD, Meng GD, Wang LL, Tian LL, Chen SY, Wu GL, Kong B, Cheng YH (2021) Simultaneously enhanced dielectric properties and through-plane thermal conductivity of epoxy composites with alumina and boron nitride nanosheets. Sci Rep 11(1)

  11. Wang LL, Yang CX, Wang XY, Shen JY, Sun WJ, Wang JK, Yang GQ, Cheng YH, Wang ZD (2022) Advances in polymers and composite dielectrics for thermal transport and high-temperature applications. Compos Part A- Appl S 107320

  12. Zhou WY, Kou YJ, Yuan MX, Li B, Cai HW, Li Z, Chen FX, Liu XR, Wang GH, Chen QG, Dang ZM (2019) Polymer composites filled with core@double-shell structured fillers: effects of multiple shells on dielectric and thermal properties. Compos Sci Technol 181:107686

    Article  CAS  Google Scholar 

  13. Zhou WY, Li T, Yuan MX, Li B, Zhong SL, Li Z, Liu XR, Zhou JJ, Wang Y, Cai HW, Dang ZM (2021) Decoupling of inter-particle polarization and intra-particle polarization in core-shell structured nanocomposites towards improved dielectric performance. Energy Stor Mater 42:1–11

    CAS  Google Scholar 

  14. Li ZY, Shen ZH, Yang X, Zhu XM, Zhou Y, Dong LJ, Xiong CX, Wang Q (2021) Ultrahigh charge-discharge efficiency and enhanced energy density of the sandwiched polymer nanocomposites with poly (methyl methacrylate) layer. Compos Sci Technol 202:108591

    Article  CAS  Google Scholar 

  15. Zheng MS, Zhang C, Yang Y, Xing ZL, Chen X, Zhong SL, Dang ZM (2020) Improved dielectric properties of PVDF nanocomposites with core-shell structured BaTiO3@polyurethane nanoparticles. IET Nanodielectrics 3(3):94–98

    Article  Google Scholar 

  16. Zha JW, Yao SC, Qiu Y, Zheng SM, Dang ZM (2019) Enhanced dielectric properties and energy storage of the sandwich-structured poly (vinylidene fluoride-co-hexafluoropropylene) composite films with functional BaTiO3@Al2O3 nanofibres. IET Nanodielectrics 2:103–108

    Article  Google Scholar 

  17. Lu X, Deng W, Wei JD, Wan YH, Zhang JJ, Zhang L, Jin L, Cheng ZY (2021) Crystallization behaviors and related dielectric properties of semicrystalline matrix in polymer-ceramic nanocomposites. Compos Part B 224

  18. Lu X, Deng W, Wei JD, Zhu YS, Ren PR, Wan YH, Yan FX, Jin L, Zhang L, Cheng ZY (2021) Filler size effects on the microstructure and properties of polymer-ceramic nanocomposites using a semicrystalline matrix. J Mater Sci 56(36):19983–19995

    Article  CAS  Google Scholar 

  19. Gao F, Mei B, Xu XY, Ren JH, Zhao DC, Zhang Z, Wang ZL, Wu YT, Liu X, Zhang Y (2022) Rational design of ZnMn2O4 nanoparticles on carbon nanotubes for high-rate and durable aqueous zinc-ion batteries. Chem Eng J 448:137742

    Article  CAS  Google Scholar 

  20. Zhao DC, Zhang Z, Ren JH, Xu YY, Xu XY, Zhou J, Gao F, Tang H, Liu SP, Wang ZL, Wang D, Wu YT, Liu X, Zhang Y (2023) Fe2VO4 nanoparticles on rGO as anode material for high-rate and durable lithium and sodium ion batteries. Chem Eng J 451:138882

    Article  CAS  Google Scholar 

  21. Zhao DC, Jiang S, Yu S, Ren JH, Zhang Z, Liu SP, Liu X, Wang ZL, Wu YT, Zhang Y (2023) Lychee seed-derived microporous carbon for high-performance sodium-sulfur batteries. Carbon 201:864–870

    Article  CAS  Google Scholar 

  22. AlTurki AM (2018) Low-temperature synthesis of core/shell of Co3O4@ZnO nanoparticle characterization and dielectric properties. J Nanostruct Chem 8(2):153–158

    Article  CAS  Google Scholar 

  23. Dai Y, Zhu X (2018) Improved dielectric properties and energy density of PVDF composites using PVP engineered BaTiO3 nanoparticles. Korean J Chem Eng 35(7):1570–1576

    Article  CAS  Google Scholar 

  24. Zhang CY, Zhao H, Yang F, Zhang N, Zhu TG, Leng KY, Bai JB (2022) Study on structural and functional properties of porous SiO2 core-shell construction/polyethylene nanocomposites with enhanced interfacial interaction. J Appl Polym Sci 139(19):52115

    Article  CAS  Google Scholar 

  25. Li HR, Chen ZY, Liu L, Chen JP, Jiang M, Xiong CX (2015) Poly (vinyl pyrrolidone)-coated graphene/poly (vinylidene fluoride) composite films with high dielectric permittivity and low loss. Compos Sci Technol 121:49–55

    Article  CAS  Google Scholar 

  26. Sun XX, Huang CJ, Wang LD, Liang L, Cheng YJ, Fei WD, Li YB (2021) Recent progress in graphene/polymer nanocomposites. Adv Mater 33(6):2001105

    Article  CAS  Google Scholar 

  27. Liu Y, Liu WW, Zhou Y, Chen JB, Wang ZG, Du W, Wen JH, Cao J, Zhang D (2022) Enhanced dielectric constant and breakdown strength in dielectric composites using TiO2@HfO2 nanowires with gradient dielectric constant. Ceram Int 48(9):12483–12489

    Article  CAS  Google Scholar 

  28. Alkhammash HI, Ibrahim AM, Fouad S (2022) Enhancement of dielectric properties of borate glasses doped BaTiO3 for energy storage devices: characterization of optical, thermal and electrical properties. J Mater 33(21):17048–17063

    CAS  Google Scholar 

  29. Jiang Y, Huang Y, Fan ZH, Shen M, Huang HT, He YB, Zhang QF (2022) Energy density and efficiency of scalable polymer nanocomposites utilizing core-shell PLZST@Al2O3 antiferroelectric fillers with dielectric gradient. Chem Eng J 446:136925

    Article  CAS  Google Scholar 

  30. Wang JQ, Cui YH, Wu F, Shah T, Ahmad M, Zhang AB, Zhang QY, Zhang BL (2020) Core-shell structured Fe/Fe3O4@TCNFs@TiO2 magnetic hybrid nanofibers: Preparation and electromagnetic parameters regulation for enhanced microwave absorption. Carbon 165:275–285

    Article  CAS  Google Scholar 

  31. Wang ZD, Yang MM, Cheng YH, Liu JY, Xiao B, Chen SY, Huang JL, Xie Qian WuGL, Wu HJ (2019) Dielectric properties and thermal conductivity of epoxy composites using quantum-sized silver decorated core/shell structured alumina/polydopamine. Compos Part A Appl Sci Manuf 118:302–311

    Article  CAS  Google Scholar 

  32. Liu PB, Gao S, Liu XD, Huang Y, He WJ, Li YT (2020) Rational construction of hierarchical hollow CuS@CoS2 nanoboxes with heterogeneous interfaces for high-efficiency microwave absorption materials. Compos B Eng 192:107992

    Article  CAS  Google Scholar 

  33. Wu WF, Liu XQ, Qiang Z, Yang JY, Liu YH, Huai K, Zhang BL, Jin SX, Xia YM, Fu KK, Zhang JM, Chen YW (2021) Inserting insulating barriers into conductive particle channels: A new paradigm for fabricating polymer composites with high dielectric permittivity and low dielectric loss. Compos Sci Technol 216:109070

    Article  CAS  Google Scholar 

  34. Ma Y, Hou CP, Zhang HP, Zhang QY, Liu H, Wu SD, Guo ZH (2019) Three-dimensional core-shell Fe3O4/Polyaniline coaxial heterogeneous nanonets: Preparation and high-performance supercapacitor electrodes. Electrochim Acta 315:114–123

    Article  CAS  Google Scholar 

  35. Cao GZ, Zhou WY, Kou YJ, Li Y, Li T, Wang Y, Cao D, Wu HJ, Wang GH, Dang ZM (2021) A comparative study on dielectric properties of PVDF/GO nanosheets encapsulated with different organic insulating shell. Polym-Plast Tech Mat 60(14):1532–1546

    CAS  Google Scholar 

  36. Xu HS, Xie CZ, Gou B, Wang R, Zhou JG, Li LC (2022) Core-double-shell structured BT@TiO2@PDA and oriented BNNSs doped epoxy nanocomposites with field-dependent nonlinear electrical properties and enhancing breakdown strength. Compos Sci Technol 230:109777

    Article  CAS  Google Scholar 

  37. Wu LY, Luo N, Xie ZL, Liu YH, Chen F, Fu Q (2020) Improved breakdown strength of Poly (vinylidene Fluoride)-based composites by using all ball-milled hexagonal boron nitride sheets without centrifugation. Compos Sci Technol 190:108046

    Article  CAS  Google Scholar 

  38. Wang Y, Zhu LJ, Zhou J, Jia BB, Jiang YY, Wang JK, Wang ML, Cheng YH, Wu K (2019) Dielectric properties and thermal conductivity of epoxy resin composite modified by Zn/ZnO/Al2O3 core-shell particles. Polym Bull 76(8):3957–3970

    Article  CAS  Google Scholar 

  39. Wang HY, You YB, Zha JW, Dang ZM (2020) Fabrication of BaTiO3@super short MWCNTs core-shell particles reinforced PVDF composite films with improved dielectric properties and high thermal conductivity. Compos Sci Technol 200:108405

    Article  CAS  Google Scholar 

  40. Bouharras FE, Raihane M, Ameduri B (2020) Recent progress on core-shell structured BaTiO3@ polymer/fluorinated polymers nanocomposites for high energy storage: Synthesis, dielectric properties and applications. Prog Mater Sci 113:100670

    Article  CAS  Google Scholar 

  41. Wang R, Xie CZ, Luo SK, Xu HS, Gou B, Zhou JG, Yang H (2021) Sandwich-structured polymer composites with core-shell structure BaTiO3@SiO2@PDA significantly enhanced breakdown strength and energy density for a high-power capacitor. ACS Appl Energy Mater 4(6):6135–6145

    Article  CAS  Google Scholar 

  42. Xie B, Wang Q, Zhang Q, Liu ZY, Lu JS, Zhang HB, Jiang SL (2021) High energy storage performance of PMMA nanocomposites utilizing hierarchically structured nanowires based on interface engineering. ACS Appl Mater Interfaces 3(23):27382–27391

    Article  Google Scholar 

  43. Cao D, Zhou WY, Yuan MX, Li B, Li T, Li J, Liu DF, Wang GH, Zhou JJ, Zhang HF (2022) Polymer composites filled with core-shell structured nanofillers: effects of shell thickness on dielectric and thermal properties of composites. J Mater Sci Mater Electron 33(8):5174–5189

    Article  CAS  Google Scholar 

  44. Ren JH, Wang ZY, Xu P, Wang C, Gao F, Zhao DC, Liu SP, Yang H, Wang D, Niu CM, Zhu YS, Wu YT Liu X, Wang ZL, Zhang Y (2022) Porous Co2VO4 nanodisk as a high-energy and fast-charging anode for lithium-ion batteries. Nano-Micro Letters 14(1)

  45. Peng WW, Zhou WY, Li T, Zhou JJ, Yao T, Wu HJ, Zhao XT, Luo J, Liu JX, Zhang DL (2022) Towards inhibiting conductivity of Mo/PVDF composites through building MoO3 shell as an interlayer for enhanced dielectric properties. J Mater Sci Mater Electron 1–19

  46. Zhou WY, Gong Y, Tu LT, Li X, Zhao W, Cai JT, Zhang YT, Zhou AN (2017) Dielectric properties and thermal conductivity of core-shell structured Ni@NiO/poly (vinylidene fluoride) composites. A J Alloys Compd 693:1–8

    Article  CAS  Google Scholar 

  47. Ren JW, Li QH, Yan L, Jia LC, Huang XL, Zhao LH, Ran QC, Fu ML (2020) Enhanced thermal conductivity of epoxy composites by introducing graphene@boron nitride nanosheets hybrid nanoparticles. Mater Des 191:108663

    Article  CAS  Google Scholar 

  48. Chen SN, Chen S, Qiao R, Xu HR, Liu ZJ, Hang L, Zhang D (2021) Enhanced dielectric constant of PVDF-based nanocomposites with one-dimensional core-shell polypyrrole/sepiolite nanofibers. Compos Part A Appl Sci Manuf 145:106384

    Article  CAS  Google Scholar 

  49. Gong Y, Zhou WY, Wang ZJ, Xu L, Kou YJ, Cai HW, Liu XR, Chen QG, Dang ZM (2018) Towards suppressing dielectric loss of GO/PVDF nanocomposites with TA-Fe coordination complexes as an interface layer. J Mater Sci Technol 34(12):2415–2423

    Article  CAS  Google Scholar 

  50. Feng MJ, Zhang CH, Zhou GT, Zhang TD, Feng Y, Chi QG, Lei QQ (2020) Enhanced energy storage characteristics in PVDF-based nanodielectrics with core-shell structured and optimized shape fillers. IEEE Access 8:81542–81550

    Article  Google Scholar 

  51. Yang F, Zhao H, Zhang C, Zhang N, Zhu TG, Yin L, Bai JB (2022) Improved energy storage property of ferroelectric polymer-based sandwiched composites interlayered with graphene oxide@SiO2 core-shell nanoplatelets. J Mater Sci 57(25):11824–11838

    Article  CAS  Google Scholar 

  52. Dang ZM, Yuan JK, Yao SH, Liao RJ (2013) Flexible nanodielectric materials with high permittivity for power energy storage. Adv Mater 25:6334–6365

    Article  CAS  PubMed  Google Scholar 

  53. Bai P, Wang SJ, Jia JJ, Wang HX, Yang W (2021) Effect of BaTiO3 nanowire on effective permittivity of the PVDF composites. AIP Adv 11(4)

Download references

Funding

The authors gratefully acknowledge the financial supports from the National Natural Science Foundation of China (No.52277028, 51937007), Shaanxi Provincial Natural Science Foundation of China (No.2022JM-186), and acknowledge the Analytic Instrumentation Center of XUST.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Wenying Zhou, Ming Gong or Mengxue Yuan.

Ethics declarations

Conflicts of interests

The authors declare no conflict of interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lin, N., Zhou, W., Peng, W. et al. Restrained dielectric loss and elevated breakdown strength in Si/PVDF composites by engineering SiO2 shell as an interlayer. J Polym Res 30, 145 (2023). https://doi.org/10.1007/s10965-023-03528-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10965-023-03528-6

Keywords

Navigation