Skip to main content
Log in

(Z)-4-(thiophen-2-ylmethylene)-4H-thieno[2,3-b]pyrrol-5(6H)-one based polymers for organic photovoltaics

  • Original Paper
  • Published:
Journal of Polymer Research Aims and scope Submit manuscript

Abstract

This paper involves polymerization and study of optoelectronic properties novel (Z)-4-(thiophen-2-ylmethylene)-4H-thieno[2,3-b]pyrrol-5(6H)-one based molecules. The novel monomer, (Z)-2-bromo-4-((5-bromothiophen-2-yl)methylene)-4H-thieno[2,3-b]pyrrol-5(6H)-one was polymerized with two different donors bis(trimethylstannyl) functionalized thienothiophene and bis(alkoxy)-benzodithiophene to form polymers P1 and P2 respectively. The synthesized polymers P1 and P2 showed respective absorption peaks at 664 nm and 665 nm respectively, measured through UV–visible Spectroscopy. P1 and P2 has greater thermal stability which were a main criterion for optoelectronic or photovoltaic applications. The DFT calculations showed that, the highest occupied molecular orbital (HOMO) and lowest unoccupied molecular orbital (LUMO) energy at -0.08319 and -0.19731 for the monomer and that of P1 was found to be -0.17888, -0.09767 and that of P2 was found at -0.17794 and -0.10263 respectively. The electrochemical energy gap for P2 was at 1.86 eV and optical band gap energy at 1.72 eV, a slight variation was observed in P2. Nevertheless, the electrochemical energy of P1 was 1.87 eV and optical band gap at 1.86 eV which were comparable. The solar cell devices based on the new polymers were fabricated and achieved a short circuit current density (JSC) as 8.5, open circuit voltage (VOC) as 0.64, fill factor (FF) as 0.52 and power conversion efficiency (PCE) as 9.06% for P2, whereas the JSC was at 8.0 with open circuit at 0.60 and fill factor 0.51 with 8.3% PCE for P1. Thus, the monomer and synthesized polymers were promising building blocks for photovoltaic applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data availability

Data availability for this work are available from the corresponding author upon request.

References

  1. Worldwide trends, dynamics and challenges and implications for management. Renew Energy 62:657–671

  2. St. Onge PB, Ocheje MU, Selivanova M, Rondeau-Gagné S, (2019) Recent advances in mechanically robust and stretchable bulk heterojunction polymer solar cells. Chem Rec 19:1008–1027

    Article  PubMed  Google Scholar 

  3. Chen CP, Chan SH, Chao TC, Ting C, Ko BT (2008) Low-bandgap poly (thiophene-phenylene-thiophene) derivatives with broaden absorption spectra for use in high-performance bulk-heterojunction polymer solar cells. J Am Chem Soc 130:12828–12833

    Article  CAS  PubMed  Google Scholar 

  4. Duan C, Huang F, Cao Y (2012) Recent development of push–pull conjugated polymers for bulk-heterojunction photovoltaics: rational design and fine tailoring of molecular structures. J Mater Chem 22:10416–10434

    Article  CAS  Google Scholar 

  5. Yang Zhang G, Zhao J, Chow PC, Jiang K, Zhang J, Zhu Z, Yan H (2018) Nonfullerene acceptor molecules for bulk heterojunction organic solar cells. Chem Rev 118(7):3447–3507

    Article  Google Scholar 

  6. Duan Z, Liang X, Feng Y, Ma H, Liang B, Wang Y, Luo S, Wang S, Schropp RE, Mai Y, Li Z (2022) Sb2Se3 thin-film solar cells exceeding 10% power conversion efficiency enabled by injection vapor deposition technology. Adv Mater 34:2202969

    Article  CAS  Google Scholar 

  7. Wu Y, Zheng Y, Yang H, Sun C, Dong Y, Cui C, Yan H, Li Y (2020) Rationally pairing photoactive materials for high-performance polymer solar cells with efficiency of 16.53%. Sci China Chem 63:265–71

    Article  CAS  Google Scholar 

  8. Beaujuge PM, Amb CM, Reynolds JR (2010) Spectral engineering in π-conjugated polymers with intramolecular donor− acceptor interactions. Acc Chem Res 43:1396–1407

    Article  CAS  PubMed  Google Scholar 

  9. Deshapande N, Pujar GH, Sunagar MG, Gaonkar S, Belavagi NS, Inamdar SR, Khazi IAM (2017) Synthesis and optoelectronic exploration of highly conjugated 1, 3, 4-oxadiazole containing donor-π-acceptor chromophores. ChemistrySelect 2(5):1793–1801

    Article  CAS  Google Scholar 

  10. Bathula C, Lee J, Ahn T, Lee SK (2014) Synthesis and characterization of benzodithiophene-based copolymers for polymer solar cells. Mol Cryst Liq Cryst 598(1):104–110

    Article  CAS  Google Scholar 

  11. Bathula C, Lee SK, Kalode P, Badgujar S, Belavagi NS, Khazi IAM, Kang Y (2016) Synthesis and photophysical studies of thiadiazole [3, 4-c] pyridine copolymer based organic field-effect transistors. J Fluoresc 26:1045–1052

    Article  CAS  PubMed  Google Scholar 

  12. Opoku H, Choy JY, Kumar A, Kim HS, Shrestha NK, Mane SD, Bathula C (2020) Benzo [1, 2-b: 4, 5-b’] dithiophene-based copolymers as panchromatic light sensors in organic photodiodes application. J Market Res 9(6):15632–15637

    CAS  Google Scholar 

  13. Kumaresan P, Vegiraju S, Ezhumalai Y, Yau SL, Kim C, Lee WH, Chen MC (2014) Fused-thiophene based materials for organic photovoltaics and dye-sensitized solar cells. Polymers 6:2645–2669

    Article  Google Scholar 

  14. Guo X, Baumgarten M, Müllen K (2013) Designing π-conjugated polymers for organic electronics. Prog Polym Sci 38:1832–1908

    Article  CAS  Google Scholar 

  15. Bathula C, Kim M, Song CE, Shin WS, Hwang DH, Lee JC, Park T (2015) Concentration-dependent pyrene-driven self-assembly in Benzo [1, 2-b: 4, 5-b′] dithiophene (BDT)–Thienothiophene (TT)–pyrene copolymers. Macromolecules 48(11):3509–3515

    Article  CAS  Google Scholar 

  16. Bathula C, Buruga K, Lee SK, Khazi IAM, Kang Y (2017) Microwave assisted synthesis of bithiophene based donor-acceptor-donor oligomers and their optoelectronic performances. J Mol Struct 1139:125–129

    Article  CAS  Google Scholar 

  17. Opoku H, Choy JY, Kumar KA, Shrestha NK, Rabani I, Patil SA, Bathula C (2021) Facile synthesis and optoelectronic properties of thienopyrroledione based conjugated polymer for organic field effect transistors. Dyes Pigm 186:108973

    Article  CAS  Google Scholar 

  18. Chen Y, Geng Y, Tang A, Wang X, Sun Y, Zhou E (2019) Changing the π-bridge from thiophene to thieno [3, 2-b] thiophene for the D–π–A type polymer enables high performance fullerene-free organic solar cells. Chem Commun 55(47):6708–6710

    Article  CAS  Google Scholar 

  19. Shi X, Chen J, Gao K, Zuo L, Yao Z, Liu F, Tang J, Jen AK (2018) Terthieno [3, 2-b] thiophene (6t) based low bandgap fused-ring electron acceptor for highly efficient solar cells with a high short-circuit current density and low open-circuit voltage loss. Adv Energy Mater 8:1702831

    Article  Google Scholar 

  20. Yang Y, Wang J, Xu H, Zhan X, Chen X (2018) Nonfullerene acceptor with “donor–acceptor combined π-bridge” for organic photovoltaics with large open-circuit voltage. ACS Appl Mater Interfaces 10(22):18984–18992

    Article  CAS  PubMed  Google Scholar 

  21. Qiu D, Adil MA, Lu K, Wei Z (2020) The crystallinity control of polymer donor materials for high-performance organic solar cells. Front Chem 8:603134

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Tong Y, Xiao Z, Du X, Zuo C, Li Y, Lv M, Ding L (2020) Progress of the key materials for organic solar cells. Sci China Chem 63:758–765

    Article  CAS  Google Scholar 

  23. He X, Yin L, Li Y (2019) Efficient design and structural modifications for tuning the photoelectric properties of small-molecule acceptors in organic solar cells. New J Chem 43(17):6577–6586

    Article  CAS  Google Scholar 

  24. Xie Z, Park H, Choi S, Park HY, Gokulnath T, Kim H, Jin SH (2023) Thienothiophene-assisted property optimization for dopant-free π-conjugation polymeric hole transport material achieving over 23% efficiency in perovskite solar cells. Adv Energy Mater 13(2):2202680

    Article  CAS  Google Scholar 

  25. Lin Y, Zhan X (2014) Non-fullerene acceptors for organic photovoltaics: an emerging horizon. Mater Horiz 1:470–488

    Article  CAS  Google Scholar 

  26. Venkateswarlu S, Lin YD, Lee KM, Liau KL, Tao YT (2020) Thiophene-fused butterfly-shaped polycyclic arenes with a diphenanthro [9, 10-b: 9′, 10′-d] thiophene core for highly efficient and stable perovskite solar cells. ACS Appl Mater Interfaces 12:50495–50504

    Article  CAS  PubMed  Google Scholar 

  27. Chen Y, Zhang Q, Du M, Li G, Li Z, Huang H, Zhou E (2019) Benzotriazole-based p-type polymers with thieno [3, 2-b] thiophene π-bridges and fluorine substituents to realize high Voc. ACS Appl Polym Mater 1(4):906–913

    Article  CAS  Google Scholar 

  28. Wang Z, Tang A, Wang H, Guo Q, Guo Q, Sun X, Zhou E (2023) Organic photovoltaic cells offer ultrahigh VOC of ∼1.2 V under AM 1.5 G light and a high efficiency of 21.2% under indoor light. Chem Eng J 451:139080

    Article  CAS  Google Scholar 

  29. Sista P, Biewer MC, Stefan MC (2012) Benzo [1, 2-b: 4, 5-b′] dithiophene Building Block for the Synthesis of Semiconducting Polymers. Macromol Rapid Commun 33:9–20

    Article  CAS  PubMed  Google Scholar 

  30. Zhu D, Bao X, Zhu Q, Gu C, Qiu M, Wen S, Yang R (2017) Thienothiophene-based copolymers for high-performance solar cells, employing different orientations of the thiazole group as a π bridge. Energy Environ Sci 10(2):614–620

    Article  CAS  Google Scholar 

  31. Zhu E, Ge G, Shu J, Yi M, Bian L, Hai J, Tang W (2014) Direct access to 4, 8-functionalized benzo [1, 2-b: 4, 5-b′] dithiophenes with deep low-lying HOMO levels and high mobilities. Journal of Materials Chemistry A 2(33):13580–13586

    Article  CAS  Google Scholar 

  32. Huang Y, Kramer EJ, Heeger AJ, Bazan GC (2014) Bulk heterojunction solar cells: morphology and performance relationships. Chem Rev 114(14):7006–7043

    Article  CAS  PubMed  Google Scholar 

  33. Zheng B, Huo L, Li Y (2020) Benzodithiophenedione-based polymers: recent advances in organic photovoltaics. NPG Asia Mater 12:1–22

    Article  Google Scholar 

  34. Zhang XQ, Cheng XB, Chen X, Yan C, Zhang Q (2017) Fluoroethylene carbonate additives to render uniform Li deposits in lithium metal batteries. Adv Funct Mater 27:1605989

    Article  Google Scholar 

  35. Yang J, Kang F, Wang X, Zhang Q (2022) Design strategies for improving the crystallinity of covalent organic frameworks and conjugated polymers: a review. Mater Horiz 9(1):121–146

    Article  CAS  PubMed  Google Scholar 

  36. Sirringhaus H, Bird M, Zhao N (2010) Charge transport physics of conjugated polymer field-effect transistors. Adv Mater 22(34):3893–3898

    Article  CAS  PubMed  Google Scholar 

  37. Liu Y, Li G, Zhang Z, Wu L, Chen J, Xu X, Chen X, Ma W, Bo Z (2016) An effective way to reduce energy loss and enhance open-circuit voltage in polymer solar cells based on a diketopyrrolopyrrole polymer containing three regular alternating units. J Mater Chem A 4:13265–13270

    Article  CAS  Google Scholar 

  38. Bronstein H, Collado-Fregoso E, Hadipour A, Soon YW, Huang Z, Dimitrov SD, McCulloch I (2013) Thieno [3, 2-b] thiophene-diketopyrrolopyrrole containing polymers for inverted solar cells devices with high short circuit currents. Adv Func Mater 23(45):5647–5654

    Article  CAS  Google Scholar 

  39. Intemann JJ, Yao K, Li YX, Yip HL, Xu YX, Liang PW, Jen AKY (2014) Highly efficient inverted organic solar cells through material and interfacial engineering of indacenodithieno [3, 2-b] thiophene-based polymers and devices. Adv Func Mater 24(10):1465–1473

    Article  CAS  Google Scholar 

  40. Zhang T, Xu Y, Yao H, Zhang J, Bi P, Chen Z, Hou J (2023) Suppressing the energetic disorder of all-polymer solar cells enables over 18% efficiency. Energy Environ Sci. https://doi.org/10.1039/D2EE03535A

    Article  Google Scholar 

  41. Hanif M, Chen L, Zhu L, Zhao D, Xiong T, Hou H (2015) Stille cross-coupling applied to get higher molecular weight polymers: Synthesis, optoelectronic, Voc properties, and solar cell application. J Appl Polym Sci 10:132

    Google Scholar 

  42. Maya Pai M, Yallur BC, Batakurki SR, Adimule V (2022) Synthesis and catalytic activity of heterogenous hybrid nanocatalyst of copper/palladium MOF, RIT 62-Cu/Pd for stille polycondensation of thieno [2, 3-b] pyrrol-5-one derivatives. Top Catal 19:1–4

    Google Scholar 

  43. Kang YS, Lu Y, Chen K, Zhao Y, Wang P, Sun WY (2019) Metal–organic frameworks with catalytic centers: From synthesis to catalytic application. Coord Chem Rev 378:262–280

    Article  CAS  Google Scholar 

  44. Mishra B, Ghosh D, Tripathi BP (2022) Finely dispersed AgPd bimetallic nanoparticles on a polydopamine modified metal organic framework for diverse catalytic applications. J Catal 411:1–14

    Article  CAS  Google Scholar 

  45. Luceño Sánchez JA, Peña Capilla R, Díez-Pascual AM (2018) High-performance PEDOT: PSS/hexamethylene diisocyanate-functionalized graphene oxide nanocomposites: preparation and properties. Polymers 10(10):1169

    Article  PubMed  PubMed Central  Google Scholar 

  46. Kim M, Ryu SU, Park SA, Choi K, Kim T, Chung D, Park T (2020) Donor–acceptor-conjugated polymer for high-performance organic field-effect transistors: a progress report. Adv Func Mater 30(20):1904545

    Article  CAS  Google Scholar 

  47. Shaheen SE, Brabec CJ, Sariciftci NS, Padinger F, Fromherz T, Hummelen JC (2001) 2.5% efficient organic plastic solar cells. Appl Phys Lett 78(6):841–843

    Article  CAS  Google Scholar 

  48. Sonar P, Singh SP, Li Y, Ooi ZE, Ha TJ, Wong I, Dodabalapur A (2011) High mobility organic thin film transistor and efficient photovoltaic devices using versatile donor–acceptor polymer semiconductor by molecular design. Energy Environ Sci 4(6):2288–22965

    Article  CAS  Google Scholar 

  49. Yau CP, Wang S, Treat ND, Fei Z, Tremolet de Villers BJ, Chabinyc ML, Heeney M (2015) Investigation of radical and cationic cross-linking in high-efficiency, low band gap solar cell polymers. Adv Energy Mater 5(5):1401228

    Article  Google Scholar 

  50. Dou L, You J, Yang J, Chen CC, He Y, Murase S, Yang Y (2012) Tandem polymer solar cells featuring a spectrally matched low-bandgap polymer. Nat Photonics 6(3):180–185

    Article  CAS  Google Scholar 

  51. Nguyen TL, Choi H, Ko SJ, Uddin MA, Walker B, Yum S, Woo HY (2014) Semi-crystalline photovoltaic polymers with efficiency exceeding 9% in a ∼300 nm thick conventional single-cell device. Energy Environ Sci 7(9):3040–3051

    Article  CAS  Google Scholar 

  52. You J, Dou L, Yoshimura K, Kato T, Ohya K, Moriarty T, Yang Y (2013) A polymer tandem solar cell with 10.6% power conversion efficiency. Nat Commun 4(1):1446

    Article  PubMed  Google Scholar 

  53. Wang L, Zhang L, Kim S, Wang T, Yuan Z, Yang C, Chen, Y (2023) Halogen-free donor polymers based on dicyanobenzotriazole with low energy loss and high efficiency in organic solar cells. Small 2206607

  54. Sun R, Wang T, Fan Q, Wu M, Yang X, Wu X, Min J (2023) 18.2%-efficient ternary all-polymer organic solar cells with improved stability enabled by a chlorinated guest polymer acceptor. Joule. https://doi.org/10.1016/j.joule.2022.12.007

Download references

Acknowledgements

Authors express their gratitude to Ramaiah University of Applied Sciences (MSRUAS), Bangalore, IISC, Mysore University, Centre for Nano and Soft Materials, Ramaiah Institute of Technology (RIT), Bangalore for providing the basic facilities also providing timely characterization facilities.

Funding

No funding availed from any institution or any organization.

Author information

Authors and Affiliations

Authors

Contributions

Mrs. Maya Pai M synthesised the acceptor, donors and also polymerization. Polymer characterization was done by Dr.Basappa C Yallur. Photovoltaic application studies were carried out by Dr.VinayakAdimule. The conceptualization of idea, formal data analysis, drafting of the manuscript was carried out by Dr.Sheetal R Batakurki.

Corresponding author

Correspondence to Sheetal R. Batakurki.

Ethics declarations

Conflict of interest

The above all authors do not have any conflict.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 301 KB)

Supplementary file2 (DOCX 85 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pai, M.M., Yallur, B.C., Adimule, V.M. et al. (Z)-4-(thiophen-2-ylmethylene)-4H-thieno[2,3-b]pyrrol-5(6H)-one based polymers for organic photovoltaics. J Polym Res 30, 147 (2023). https://doi.org/10.1007/s10965-023-03524-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10965-023-03524-w

Keywords

Navigation