Skip to main content
Log in

EDTA incorporated Fe-Zn double metal cyanide catalyst for the controlled synthesis of polyoxypropylene glycol

  • Original Paper
  • Published:
Journal of Polymer Research Aims and scope Submit manuscript

Abstract

One pot, solvent free ring opening polymerization (ROP) of propylene oxide (PO) was studied by using lab synthesized heterogeneous double metal cyanide (DMC) catalyst. A series of DMC catalysts was prepared by using EDTA as novel complexing agent (CA) and characterized in detail by PXRD, FT-IR, UV–Vis, 13C CP-MAS NMR, AAS, SEM, XPS, and CHNS analyzer. The suitable amount of CA favored high Zn/Fe ratio and enhanced catalytic activity for polyoxypropylene glycol (PPG) synthesis. It was observed that the properties of PPG are governed by reaction parameters, including catalyst amount, reaction time, temperature, pressure, feed to initiator ratio, and different initiators. The prepared polymers have Mw (160 to 19,667 g mol−1) and PDI (1.05 to 3.01) during optimization. The structure elucidation of PPG was confirmed by FT-IR, GPC, and 1H NMR. Dipropylene glycol (DPG) initiator yielded highest 93% PPG with 1.29 PDI, and 4.9 mg-KOH g−1 hydroxyl value. The kinetics study confirms first-order reaction with proposed coordination mechanism.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. O'Connor JM, Lickei DL, Grieve RL (2002) US Patent 6,359,101

  2. Patton J (1976) Chem Tech 6:780

    CAS  Google Scholar 

  3. Becker H, Wagner G (1984) Zur Übertragungsreaktion bei der anionichen Polymerisation von Oxiranen VI. Zum Einfluß von Kronenetherzusätzen auf die Polymerisation von Propylenoxid†. Acta Polym 35:28–32

    Article  CAS  Google Scholar 

  4. Wu B, Harlan CJ, Lenz RW, Barron AR (1997) Macromolecules 30:316–318

    Article  CAS  Google Scholar 

  5. Emig N, Ngugen H, Krautscheid H, Eau R, Cazaux JB, Bertrand G (1998) Organometllics 17:3599–3608

    Article  CAS  Google Scholar 

  6. Marbach J, Nörnberg B, Rahlf A, Luinstra G (2017) Zinc glutarate-mediated copolymerization of CO 2 and PO–parameter studies using design of experiments. Catal Sci Technol 7:2897–2905

    Article  CAS  Google Scholar 

  7. van der Hulst H, Pogany G.A., Kuyper J (1984) US Patent 4,477,589

  8. Yu GE, Masters AJ, Heatley F, Booth C, Blease TG (1994) Anionic polymerisation of propylene oxide. Investigation of double-bond and head-to-head content by NMR spectroscopy. Macromole Chem Phys 195:1517–1538

    Article  CAS  Google Scholar 

  9. Exner JH, Steiner EC (1974) Solvation and ion pairing of alkali-metal alkoxides in dimethyl sulfoxide. Conductometric studies. J Am Chem SOC 96:1782–1787

    Article  CAS  Google Scholar 

  10. Herold R, Livigni R (1972) Polymerization of cyclic ethers and sulfides. Polym Prepr 13:545–551

    CAS  Google Scholar 

  11. Herold R (1974) Amorphous, high molecular weight polypropylene oxide, macromolecular. Synthesis 5:9–13

    CAS  Google Scholar 

  12. Le-Khac B (1998) Highly active double metal cyanide catalysts, US Patent 5,693,584

  13. Le-Khac B (1995) Double metal cyanide complex catalysts, US Patent 5,470,813

  14. van der Hulst H, Pogany GA, Kuyper J (1984) Catalysts for the polymerization of epoxides and process for the preparation of such catalysts, US Patent 4,477,589

  15. TH, Watabe T, Doi T, Kunii N (1990) Eur Pat Appl EP 383,333

  16. TH, Yamada K (1992) JP 4,415,123

  17. Kim I, Ahna J-T, Haa CS, Yangb CS, Park I (2003) Polymerization of propylene oxide by using double metal cyanide catalysts and the application to polyurethane elastomer. Polymer 44:3417–3428

    Article  CAS  Google Scholar 

  18. Sebastian J, Srinivas D (2014) Effects of method of preparation on catalytic activity of Co–Zn double-metal cyanide catalysts for copolymerization of CO2 and epoxide. Appl Catal A 482:300–308

    Article  CAS  Google Scholar 

  19. Kim I, Yi MJ, Lee KJ, Park D-W, Kim BU, Ha C-S (2006) Aliphatic polycarbonate synthesis by copolymerization of carbon dioxide with epoxides over double metal cyanide catalysts prepared by using ZnX2 (X= F, Cl, Br, I). Catal Today 111:292–296

    Article  CAS  Google Scholar 

  20. Dienes Y, Leitner W, Müller MG, Offermans WK, Reier T, Reinholdt A, Weirich TE, Müller TE (2012) Hybrid sol–gel double metal cyanide catalysts for the copolymerisation of styrene oxide and CO 2. Green Chem 14:1168–1177

    Article  CAS  Google Scholar 

  21. Varghese JK, Park DS, Jeon JY, Lee BY (2013) Double metal cyanide catalyst prepared using H3Co (CN) 6 for high carbonate fraction and molecular weight control in carbon dioxide/propylene oxide copolymerization. J Polym Sci Part A Polym Chem 51:4811–4818

    Article  CAS  Google Scholar 

  22. Srivastava R, Srinivas D, Ratnasamy P (2006) Fe–Zn double-metal cyanide complexes as novel, solid transesterification catalysts. J Catal 241:34–44

    Article  CAS  Google Scholar 

  23. Srinivas D, Srivastava R, Ratnasamy P (2010) Transesterification catalyst and a process for the preparation thereof, US Patent 7754643B2

  24. García-Ortiz A, Grirrane A, Reguera E, García H (2014) Mixed (Fe2+ and Cu2+) double metal hexacyanocobaltates as solid catalyst for the aerobic oxidation of oximes to carbonyl compounds. J Catal 311:386–392

    Article  Google Scholar 

  25. Sebastian J, Srinivas D (2013) Influence of method of preparation of solid, double-metal cyanide complexes on their catalytic activity for synthesis of hyperbranched polymers. Appl Catal A 464:51–60

    Article  Google Scholar 

  26. Yoon JH, Lee IK, Choi HY, Choi EJ, Yoon JH, Shimc SE, Kim II (2011) Double metal cyanide catalysts bearing lactate esters as eco-friendly complexing agents for the synthesis of highly pure polyols. Green Chem 13:631–639

    Article  CAS  Google Scholar 

  27. ChenZhang SP, Chen L (2004) Fe/Zn double metal cyanide (DMC) catalyzed ring-opening polymerization of propylene oxide Part 3. Synthesis of DMC catalysts. Prog Org Coat 50:269–272

    Article  Google Scholar 

  28. Dios MP, Andres-Iglesias C, Fernandez A, Salmi T, Galdamez JR, Garcia-Serna J (2017) Effect of Zn/Co initial preparation ratio in the activity of double metal cyanide catalysts for propylene oxide and CO2 copolymerization. Eur Polymer J 88:280–291

    Article  Google Scholar 

  29. Tharun J, Dharman MM, Hwang Y, Roshan R, Park MS, Park D-W (2012) Tuning double metal cyanide catalysts with complexing agents for the selective production of cyclic carbonates over polycarbonates. Appl Catal A 419:178–184

    Article  Google Scholar 

  30. Tran CH, Pham LTT, Lee Y, Jang HB, Kim S, Kim I (2019) Mechanistic insights on Zn (II)− Co (III) double metal cyanide-catalyzed ring-opening polymerization of epoxides. J Catal 372:86–102

    Article  CAS  Google Scholar 

  31. Almora-Barrios N, Pogodin S, Bellarosa L, García-Melchor M, Revilla-López G, García-Ratés M, Vázquez-García AB, Hernández-Ariznavarreta P, López N (2015) Structure, activity, and deactivation mechanisms in double metal cyanide catalysts for the production of polyols. ChemCatChem 7:928–935

    Article  CAS  Google Scholar 

  32. Huang YJ, Zhang XH, Hua ZJ, Chen SL, Qi GR (2010) Ring-opening polymerization of propylene oxide catalyzed by a calcium-chloride-modified zinc-cobalt double metal-cyanide complex. Macromol Chem Phys 211:1229–1237

    Article  CAS  Google Scholar 

  33. Coates J (2000) Interpretation of infrared spectra, a practical approach, Citeseer

  34. Chen S, Qi GR, Hua ZJ, Yan HQ (2004) Double metal cyanide complex based on Zn3 [Co (CN) 6] 2 as highly active catalyst for copolymerization of carbon dioxide and cyclohexene oxide. J Polym Sci Part A Polym Chem 42:5284–5291

    Article  CAS  Google Scholar 

  35. Huang Y, Qi G, Feng L (2002) Preparation, characterization and catalytic performance of double metal-cyanide complexes. Chin J Catal 23:113–117

    CAS  Google Scholar 

  36. Peeters A, Valvekens P, Ameloot R, Sankar G, Kirschhock CE, De Vos DE (2013) Zn–Co double metal cyanides as heterogeneous catalysts for hydroamination: A structure–activity relationship. ACS Catal 3:597–607

    Article  CAS  Google Scholar 

  37. Yi MJ, Byun S-H, Ha C-S, Park D-W, Kim I (2004) Copolymerization of cyclohexene oxide with carbon dioxide over nano-sized multi-metal cyanide catalysts. Solid State Ionics 172:139–144

    Article  CAS  Google Scholar 

  38. Kim I, Ahn J-T, Ha CS, Yang CS, Park I (2003) Polymerization of propylene oxide by using double metal cyanide catalysts and the application to polyurethane elastomer. Polymer 44:3417–3428

    Article  CAS  Google Scholar 

  39. Grosvenor A, Kobe B, Biesinger M, McIntyre N (2004) Investigation of multiplet splitting of Fe 2p XPS spectra and bonding in iron compounds. Surf Interface Anal Int J Devoted Dev Appl Tech Anal Surf Interfaces Thin Films 36:1564–1574

    CAS  Google Scholar 

  40. Aime S, Gobetto R, Nano R, Santucci E (1987) 13C solid state CP/MAS NMR studies of edta complexes. Inorg Chim Acta 129:L23–L25

    Article  Google Scholar 

  41. Grobelny Z, Matlengiewicz M, Jurek-Suliga J, Golba S, Skrzeczyna K (2018) The influence of initiator and macrocyclic ligand on unsaturation and molar mass of poly (propylene oxide) s prepared with various anionic system. Polym Bull 75:1101–1121

    Article  CAS  Google Scholar 

  42. Ma J-H, Guo C, Tang Y-L, Liu H-Z (2007) 1H NMR spectroscopic investigations on the micellization and gelation of PEO− PPO− PEO block copolymers in aqueous solutions. Langmuir 23:9596–9605

    Article  CAS  PubMed  Google Scholar 

  43. Schilling FC, Tonelli AE (1986) Carbon-13 NMR determination of poly (propylene oxide) microstructure. Macromolecules 19:1337–1343

    Article  CAS  Google Scholar 

  44. Larkin P (2011) Infrared and Raman Spectroscopy, Principles and Spectral Interpretation, 1st edn. Elsevier, Oxford

    Google Scholar 

  45. Lligadas G, Ronda J, Galia M, Biermann U, Metzger J (2006) Synthesis and characterization of polyurethanes from epoxidized methyl oleate based polyether polyols as renewable resources. J Polym Sci Part A Polym Chem 44:634–645

    Article  CAS  Google Scholar 

  46. Shin SR, Kim HN, Liang JY, Lee SH, Lee DS (2019) Sustainable rigid polyurethane foams based on recycled polyols from chemical recycling of waste polyurethane foams. J Appl Polym Sci 136:47916

    Article  Google Scholar 

  47. Molero C, de Lucas A, Rodríguez JF (2006) Recovery of polyols from flexible polyurethane foam by “split-phase” glycolysis: Glycol influence. Polym Degrad Stab 91:221–228

    Article  CAS  Google Scholar 

  48. Phan H, Kortsen K, Englezou G, Couturaud B, Nedoma AJ, Pearce AK, Taresco V (2020) Functional initiators for the ring-opening polymerization of polyesters and polycarbonates: An overview. J Polym Sci 58:1911–1923

    Article  CAS  Google Scholar 

  49. Tran CH, Lee MW, Kim SA, Jang HB, Kim I (2020) Kinetic and mechanistic study of heterogeneous double metal cyanide-catalyzed ring-opening multibranching polymerization of glycidol. Macromolecules 53:2051–2060

    Article  CAS  Google Scholar 

  50. Kang M, Liu X, Wang X (2002) Hecheng Xiangjiao Gongye 14:247

  51. Zhou T, Zou Z, Gan J, Chen L, Zhang M (2011) Copolymerization of epoxides and carbon dioxide by using double metal cyanide complex (DMC) with high crystallinity. J Polym Res 18:2071–2076

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors are grateful to Director, CSIR-IIP, for his kind permission to publish the results. UK is thankful to CSIR for research funding (OLP-1111). AV and VV acknowledge Department of Science and Technology (DST) for providing INSPIRE research fellowship. SS and BS are grateful to CSIR for the research fellowship. The authors are thankful to Analytical Science Division, CSIR-IIP, for their analytical support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Umesh Kumar.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Highlights

• Room temperature synthesized double metal cyanide (DMC) catalyst using EDTA as a novel complexing agent (CA).

• Prepared DMC catalyst is effective for PPG synthesis via ring-opening polymerization.

• CA imparts the heterogeneity in the DMC catalyst and recyclability.

• DMC catalyst has higher activity with >99% PPG yield, low PDI (1.05), and low hydroxyl number (4.9 mg-KOH g-1).

• A detailed study of structure reactivity and relationship for PPG synthesis using DMC catalyst.

• A first-order reaction kinetics for PPG synthesis.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 1380 KB)

Supplementary file2 (DOCX 138 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Verma, A., Saini, S., Sharma, B. et al. EDTA incorporated Fe-Zn double metal cyanide catalyst for the controlled synthesis of polyoxypropylene glycol. J Polym Res 30, 62 (2023). https://doi.org/10.1007/s10965-022-03407-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10965-022-03407-6

Keywords

Navigation