Skip to main content
Log in

Pectin-based inks development for 3D bioprinting of scaffolds

  • Original Paper
  • Published:
Journal of Polymer Research Aims and scope Submit manuscript

Abstract

3D bioprinting allows creative ideas for 3D scaffold development. Therefore, it enhances the creation of customized dressings for tissue regeneration and the wound healing process. A relevant requirement when employing hydrogels in extrusion-based bioprinting (EBB), is to maintain design fidelity and shape of printed structures. In this work, three novel biopolymeric inks were formulated of which components are pectin (Pe) with the addition of carboxymethylcellulose (CMC) and microcrystalline cellulose (MCC). Specific methods for study extrudability, printability, physicochemical properties, and cytotoxicity of inks and 3D structures were proposed. 3D models of medium and high printing complexity were developed. Pe + MCC scaffold presents the best square interconnected channels (Printability≈ 1). Young’s modulus of Pe and Pe + MCC scaffolds are in the same range of values as the skin modulus. Pe scaffold presents the highest water retention capacity. From the cytotoxicity test, the three inks showed well in vitro biocompatibility with L929 fibroblast cells. These results suggest that Pe and Pe + MCC biopolymer inks can potentially be implemented for developing 3D printed personalized dressings for wound healing treatment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Data Availability

The dataset on which this paper is based is too large to be retained or publicly archived with available resources. Documentation and methods used to support this study can be provided contacting corresponding authors.

References

  1. Brown MS, Ashley B, Koh A (2018) Wearable technology for chronic wound monitoring: current dressings, advancements and future prospects. Front Bioeng Biotechnol 6:47. https://doi.org/10.3389/fbioe.2018.00047

    Article  Google Scholar 

  2. Bozoğlan BK, Duman O, Tunç S (2020) Preparation and characterization of thermosensitive chitosan / carboxymethylcellulose / scleroglucan nanocomposite hydrogels. Int J Biol Macromol 162:781–797. https://doi.org/10.1016/j.ijbiomac.2020.06.087

    Article  CAS  Google Scholar 

  3. Polat TG, Duman O, Tunc S (2020) Agar/κ-carrageenan / montmorillonite nanocomposite hydrogels for wound dressing applications. Int J Biol Macromol 164:4591–4602. https://doi.org/10.1016/j.ijbiomac.2020.09.048

    Article  CAS  Google Scholar 

  4. Bozoğlan BK, Duman O, Tunç S (2021) Smart antifungal thermosensitive chitosan/ carboxymethylcellulose / scleroglucan / montmorillonite nanocomposite hydrogels for onychomycosis treatment. Colloids Surf A Physicochem Eng Asp 610:125600. https://doi.org/10.1016/j.colsurfa.2020.125600

    Article  CAS  Google Scholar 

  5. Gleadall A, Visscher D, Yang J, Thomas D, Segal J (2018) Review of additive manufactured tissue engineering scaffolds: relationship between geometry and performance. Burns Trauma 6. https://doi.org/10.1186/s41038-018-0121-4

  6. Boateng J, Catanzano O (2015) Advanced therapeutic dressings for effective wound healing — a review. J Pharm Sci 104(11):3653–3680. https://doi.org/10.1002/jps.24610

    Article  CAS  Google Scholar 

  7. Antezana PE, Municoy S, Álvarez-Echazú MI, Santo-Orihuela PL, Catalano PN, Al-Tel TH, Desimone MF (2022) The 3D bioprinted scaffolds for wound healing. Pharmaceutics 14(2):464. https://doi.org/10.3390/pharmaceutics14020464

    Article  CAS  Google Scholar 

  8. Ozbolat IT, Hospodiuk M (2016) Current advances and future perspectives in extrusion-based bioprinting. Biomaterials 76:321–343. https://doi.org/10.1016/j.biomaterials.2015.10.076

    Article  CAS  Google Scholar 

  9. Groll J, Burdick JA, Cho DW, Derby B, Gelinsky M, Heilshorn SC, Jüngst T, Malda J, Mironov VA, Nakayama K, Ovsianikov A, Sun W, Takeuchi S, Yoo JJ, Woodfield TBF (2018) A definition of bioinks and their distinction from biomaterial inks. Biofabrication 11(1):013001. https://doi.org/10.1088/1758-5090/aaec52

    Article  CAS  Google Scholar 

  10. Müller M, Becher J, Schnabelrauch M, Zenobi-Wong M (2015) Nanostructured Pluronic hydrogels as bioinks for 3D bioprinting. Biofabrication 7(3):035006. https://doi.org/10.1088/1758-5090/7/3/035006

    Article  CAS  Google Scholar 

  11. Mayet N, Choonara YE, Kumar P, Tomar LK, Tyagi C, Du Toit LC, Pillay V (2014) A comprehensive review of advanced biopolymeric wound healing systems. J Pharm Sci 103(8):2211–2230. https://doi.org/10.1002/jps.24068

    Article  CAS  Google Scholar 

  12. Noreen A, Akram J, Rasul I, Mansha A, Yaqoob N, Iqbal R, Tabasum S, Zuber M, Zia KM (2017) Pectins functionalized biomaterials; a new viable approach for biomedical applications: A review. Int J Biol Macromol 101:254–272. https://doi.org/10.1016/j.ijbiomac.2017.03.029

    Article  CAS  Google Scholar 

  13. Mellinas C, Ramos M, Jiménez A, Garrigós MC (2020) Recent trends in the use of pectin from agro-waste residues as a natural-based biopolymer for food packaging applications. Materials 13(3):673. https://doi.org/10.3390/ma13030673

    Article  CAS  Google Scholar 

  14. Türkkan S, Atila D, Akdağ A, Tezcaner A (2018) Fabrication of functionalized citrus pectin/silk fibroin scaffolds for skin tissue engineering. J Biomed Mater Res Part B Appl Biomater 106(7):2625–2635. https://doi.org/10.1002/jbm.b.34079

    Article  CAS  Google Scholar 

  15. Mishra RK, Majeed ABA, Banthia AK (2011) Development and characterization of pectin/gelatin hydrogel membranes for wound dressing. Int J Plast Technol 15(1):82–95. https://doi.org/10.1007/s12588-011-9016-y

    Article  CAS  Google Scholar 

  16. Munarin F, Tanzi MC, Petrini P (2012) Advances in biomedical applications of pectin gels. Int J Biol Macromol 51(4):681–689. https://doi.org/10.1016/j.ijbiomac.2012.07.002

    Article  CAS  Google Scholar 

  17. Piras CC, Fernández-Prieto S, De Borggraeve WM (2017) Nanocellulosic materials as bioinks for 3D bioprinting. Biomater Sci 5(10):1988–1992. https://doi.org/10.1016/j.ijbiomac.2012.07.002

    Article  CAS  Google Scholar 

  18. Zhao GH, Kapur N, Carlin B, Selinger E, Guthrie JT (2011) Characterization of the interactive properties of microcrystalline cellulose – carboxymethylcellulose hydrogels. Int J Pharm 415(1–2):95–101. https://doi.org/10.1016/j.ijpharm.2011.05.054

    Article  CAS  Google Scholar 

  19. Ramli NA, Wong TW (2011) Sodium carboxymethylcellulose scaffolds and their physicochemical effects on partial thickness wound healing. Int J Pharm 403(1–2):73–82. https://doi.org/10.1016/j.ijpharm.2010.10.023

    Article  CAS  Google Scholar 

  20. Agarwal T, Narayana SGH, Pal K, Pramanik K, Giri S, Banerjee I (2015) Calcium alginate-carboxymethylcellulose beads for colon-targeted drug delivery. Int J Biol Macromol 75:409–417. https://doi.org/10.1016/j.ijbiomac.2014.12.052

    Article  CAS  Google Scholar 

  21. Tripathy J, Raichur AM (2013) Designing carboxymethyl cellulose based layer-by-layer capsules as a carrier for protein delivery. Colloids Surf B: Biointerfaces 101:487–492. https://doi.org/10.1016/j.colsurfb.2012.07.025

    Article  CAS  Google Scholar 

  22. Cai X, Hu S, Yu B, Cai Y, Yang J, Li F, Zheng Y, Shi X (2018) Transglutaminase-catalyzed preparation of crosslinked carboxymethyl chitosan/carboxymethyl cellulose/collagen composite membrane for postsurgical peritoneal adhesion prevention. Carbohydr Polym 201:201–210. https://doi.org/10.1016/j.carbpol.2018.08.065

    Article  CAS  Google Scholar 

  23. Trache D, Hussin MH, Hui Chuin CT, Sabar S, Fazita MRN, Taiwo OFA, Hassan TM, Haafiz MKM (2016) Microcrystalline cellulose: Isolation, characterization and bio-composites application—A review. Int J Biol Macromol 93:789–804. https://doi.org/10.1016/j.ijbiomac.2016.09.056

    Article  CAS  Google Scholar 

  24. Zulkifli NI, Samat N, Anuar H, Zainuddin N (2015) Mechanical properties and failure modes of recycled polypropylene/microcrystalline cellulose composites. Mater Des 69:114–123. https://doi.org/10.1016/j.matdes.2014.12.053

    Article  CAS  Google Scholar 

  25. Kollar P, Závalová V, Hošek J, Havelka P, Sopuch T, Karpíšek M, Třetinová D, Suchý P Jr (2011) Cytotoxicity and effects on inflammatory response of modified types of cellulose in macrophage-like THP-1 cells. Int Immunopharmacol 11(8):997–1001. https://doi.org/10.1016/j.intimp.2011.02.016

    Article  CAS  Google Scholar 

  26. Ricci EB, Cassino R, Di Campli C (2010) Microcrystalline cellulose membrane for re-epithelisation of chronic leg wounds: a prospective open study. Int Wound J 7(6):438–447. https://doi.org/10.1111/j.1742-481X.2010.00707.x

    Article  Google Scholar 

  27. Ding H, Chang RC (2018) Printability study of bioprinted tubular structures using liquid hydrogel precursors in a support bath. Appl Sci 8(3):403. https://doi.org/10.3390/app8030403

    Article  CAS  Google Scholar 

  28. Armstrong JP, Burke M, Carter BM, Davis SA, Perriman AW (2016) 3D bioprinting using a templated porous bioink. Adv Healthc Mater 14:1724–1730. https://doi.org/10.1002/adhm.201600022

    Article  CAS  Google Scholar 

  29. Ogura H, Nerella VN, Mechtcherine V (2018) Developing and testing of strain-hardening cement-based composites (SHCC) in the context of 3D-printing. Materials 11(8):1375. https://doi.org/10.3390/ma11081375

    Article  CAS  Google Scholar 

  30. Ouyang L, Yao R, Zhao Y, Sun W (2016) Effect of bioink properties on printability and cell viability for 3D bioplotting of embryonic stem cells. Biofabrication 8(3):035020. https://doi.org/10.1088/1758-5090/8/3/035020

    Article  CAS  Google Scholar 

  31. Chen Y, Wang Y, Yang Q, Liao Y, Zhu B, Zhao G, Shen R, Lu X, Qu S (2018) A novel thixotropic magnesium phosphate-based bioink with excellent printability for application in 3D printing. J Mater Chem B 6(27):4502–4513. https://doi.org/10.1039/C8TB01196F

    Article  CAS  Google Scholar 

  32. Hao ZQ, Chen ZJ, Chang MC, Meng JL, Liu JY, Feng CP (2018) Rheological properties and gel characteristics of polysaccharides from fruit-bodies of Sparassis crispa. Int J Food Prop 21(1):2283–2295. https://doi.org/10.1080/10942912.2018.1510838

    Article  CAS  Google Scholar 

  33. Harn HIC, Ogawa R, Hsu CK, Hughes MW, Tang MJ, Chuong CM (2019) The tension biology of wound healing. Exp Dermatol 28(4):464–471. https://doi.org/10.1111/exd.13460

    Article  Google Scholar 

  34. Pailler-Mattei C, Bec S, Zahouani H (2008) In vivo measurements of the elastic mechanical properties of human skin by indentation tests. Med Eng Phys 30(5):599–606. https://doi.org/10.1016/j.medengphy.2007.06.011

    Article  CAS  Google Scholar 

  35. Delalleau A, Josse G, Lagarde JM, Zahouani H, Bergheau JM (2006) Characterization of the mechanical properties of skin by inverse analysis combined with the indentation test. J Biomech 39(9):1603–1610. https://doi.org/10.1016/j.jbiomech.2005.05.001

    Article  Google Scholar 

  36. Ngadaonye JI, Geever LM, Killion J, Higginbotham CL (2013) Development of novel chitosan-poly (N, N-diethylacrylamide) IPN films for potential wound dressing and biomedical applications. J Polym Res 20(7):1–13. https://doi.org/10.1007/s10965-013-0161-1

    Article  CAS  Google Scholar 

  37. Ghaffari A, Navaee K, Oskoui M, Bayati K, Rafiee-Tehrani M (2007) Preparation and characterization of free mixed-film of pectin/chitosan/Eudragit® RS intended for sigmoidal drug delivery. Eur J Pharm Biopharm 67(1):175–186. https://doi.org/10.1016/j.ejpb.2007.01.013

    Article  CAS  Google Scholar 

  38. Mosmann T (1983) Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assays. J Immunol Methods 65(1–2):55–63. https://doi.org/10.1016/0022-1759(83)90303-4

    Article  CAS  Google Scholar 

  39. International Organization for Standardization, ISO 10993–12 (1996) Biological evaluation of medical devices. Part 12: Sample preparation and reference materials, 4th, international organization for standardization, Geneva. (Accessed on 28 Apr 2021)

  40. International Organization for Standardization, UNI EN ISO 10993–5:2009 (2009) Biological evaluation of medical devices—Part 5: In vitro cytotoxicity testing, International Organization for Standardization, Geneva, Switzerland. (Accessed on 28 Apr 2021)

  41. Sun W, Starly B, Daly AC, Burdick JA, Groll J, Skeldon G, Shu W, Sakai Y, Shinohara M, Nishikawa M, Jang J, Cho D, Nie M, Takeuchi S, Ostrovidov S, Khademhosseini A, Kamm R, Mironov V, Moroni L, Ozbolat IT (2020) The bioprinting roadmap. Biofabrication 12(2):022002. https://doi.org/10.1088/1758-5090/ab5158

    Article  CAS  Google Scholar 

  42. Lopez-Sanchez P, Martinez-Sanz M, Bonilla MR, Wang D, Gilbert EP, Stokes JR, Gidley M (2017) Cellulose-pectin composite hydrogels: Intermolecular interactions and material properties depend on order of assembly. Carbohyd Polym 162:71–81. https://doi.org/10.1016/j.carbpol.2017.01.049

    Article  CAS  Google Scholar 

  43. Aburto J, Moran M, Galano A, Torres-García E (2015) Non-isothermal pyrolysis of pectin: A thermochemical and kinetic approach. J Anal Appl Pyrol 112:94–104. https://doi.org/10.1016/j.jaap.2015.02.012

    Article  CAS  Google Scholar 

  44. Gonzalez JS, Ludueña LN, Ponce A, Alvarez VA (2014) Poly (vinyl alcohol)/cellulose nanowhiskers nanocomposite hydrogels for potential wound dressings. Mat Sc Eng: C 34:54–61. https://doi.org/10.1016/j.msec.2013.10.006

    Article  CAS  Google Scholar 

  45. Wang J, Xu X, Zhang J, Chen M, Dong S, Han J, Wei M (2018) Moisture-permeable, humidity-enhanced gas barrier films based on organic/inorganic multilayers. ACS Appl Mater Interfaces 10(33):28130–28138. https://doi.org/10.1021/acsami.8b09740

    Article  CAS  Google Scholar 

  46. Yu Y, Gao X, Jiang Z, Zhang W, Ma J, Liu X, Zhang L (2018) Homogeneous grafting of cellulose with polycaprolactone using quaternary ammonium salt systems and its application for ultraviolet-shielding composite films. RSC Adv 8(20):10865–10872. https://doi.org/10.1039/C8RA00120K

    Article  CAS  Google Scholar 

  47. Choi Y, Simonsen J (2006) Cellulose nanocrystal-filled carboxymethyl cellulose nanocomposites. J Nanosci Nanotechnol 6(3):633–639. https://doi.org/10.1166/jnn.2006.132

    Article  CAS  Google Scholar 

  48. Minhas MU, Ahmad M, Anwar J, Khan S (2016) Synthesis and characterization of biodegradable hydrogels for oral delivery of 5-fluorouracil targeted to colon: screening with preliminary in vivo studies. Adv Polym Technol 37(1):221–229. https://doi.org/10.1002/adv.21659

    Article  CAS  Google Scholar 

  49. Sungthongjeen S, Sriamornsak P, Pitaksuteepong T, Somsiri A, Puttipipatkhachorn S (2004) Effect of degree of esterification of pectin and calcium amount on drug release from pectin-based matrix tablets. AAPS PharmSciTech 5(1):50–57. https://doi.org/10.1208/pt050109

    Article  Google Scholar 

  50. Thomas LC, Schmidt SJ (2017) Thermal Analysis. In: Nielsen SS (Ed.), Food Analysis, Food Science Text Series, Springer, Cham, pp. 529–544. https://doi.org/10.1007/978-3-319-45776-5_30

  51. Mishra RK, Datt M, Banthia AK (2008) Synthesis and characterization of pectin/PVP hydrogel membranes for drug delivery system. AAPS PharmSciTech 9(2):395–403. https://doi.org/10.1208/s12249-008-9048-6

    Article  CAS  Google Scholar 

  52. Doh SJ, Lee JY, Lim DY, Im JN (2013) Manufacturing and analyses of wet-laid nonwoven consisting of carboxymethyl cellulose fibers. Fibers Polym 14(12):2176–2184. https://doi.org/10.1007/s12221-013-2176-y

    Article  CAS  Google Scholar 

  53. Carbinatto FM, de Castro AD, Cury BS, Magalhães A, Evangelista RC (2012) Physical properties of pectin–high amylose starch mixtures cross-linked with sodium trimetaphosphate. Int J Pharm 423(2):281–288. https://doi.org/10.1016/j.ijpharm.2011.11.042

    Article  CAS  Google Scholar 

  54. Aprilia NS, Davoudpour Y, Zulqarnain W, Khalil HA, Hazwan CCM, Hossain MS, Haafiz MM (2016) Physicochemical characterization of microcrystalline cellulose extracted from kenaf bast. BioResources 11(2):3875–3889. https://doi.org/10.15376/biores.11.2.3875-3889

    Article  CAS  Google Scholar 

  55. Yuliarti O, Chong SY, Goh KKT (2017) Physicochemical properties of pectin from green jelly leaf (Cyclea barbata Miers). Int J Biol Macromol 103:1146–1154. https://doi.org/10.1016/j.ijbiomac.2017.05.147

    Article  CAS  Google Scholar 

  56. Yasmeen S, Kabiraz MK, Saha B, Qadir MR, Gafur MA, Masum SM (2016) Chromium (VI) ions removal from tannery effluent using chitosan-microcrystalline cellulose composite as adsorbent. Int Res J Pure Appl Chem 10(4):1–14. https://doi.org/10.9734/IRJPAC/2016/23315

    Article  CAS  Google Scholar 

  57. Supeno S, Daik R, El-Sheikh SM (2014) The synthesis of a macro-initiator from cellulose in a zinc-based ionic liquid. BioResources 9(1):1267–1275. https://doi.org/10.15376/biores.9.1.1267-1275

    Article  Google Scholar 

  58. Ninan N, Muthiah M, Park IK, Elain A, Thomas S, Grohens Y (2013) Pectin/carboxymethyl cellulose/microfibrillated cellulose composite scaffolds for tissue engineering. Carbohydr Polym 98(1):877–885. https://doi.org/10.1016/j.carbpol.2013.06.067

    Article  CAS  Google Scholar 

  59. Ueno T, Yokota S, Kitaoka T, Wariishi H (2007) Conformational changes in single carboxymethylcellulose chains on a highly oriented pyrolytic graphite surface under different salt conditions. Carbohyd Res 342(7):954–960. https://doi.org/10.1016/j.carres.2007.01.017

    Article  CAS  Google Scholar 

  60. Okur ME, Karantas ID, Şenyiğit Z, Üstündağ Okur N, Siafaka PI (2020) Recent trends on wound management: New therapeutic choices based on polymeric carriers. Asian J Pharm Sci 15:661–684. https://doi.org/10.1016/j.ajps.2019.11.008

    Article  Google Scholar 

  61. Martău GA, Mihai M, Vodnar DC (2019) The use of chitosan, alginate, and pectin in the biomedical and food sector—biocompatibility, bioadhesiveness, and biodegradability. Polymers 11(11):1837. https://doi.org/10.3390/polym11111837

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The present work was supported by grants of ANPCyT (Agencia Nacional de Promoción Científica y Tecnológica) Project: PICT 2017-0359 and Universidad Nacional de La Plata grant X/815 to G.R. Castro. Acknowledgment to Andrés Ruscitti and Yesica Roser from Industrial Design of UNLa (Universidad Nacional de Lanus, Lanus, Argentina) who kindly provided the “Hemi-sphere scaffold 3D model”.

Author information

Authors and Affiliations

Authors

Contributions

Verónica E. Passamai: Conceptualization, Methodology, Software, Formal analysis, Investigation, Writing—Original Draft, Visualization. Sergio Katz: Visualization, Resources, Software, Data Curation, Methodology. Boris Rodenak-Kladniew: Investigation. Vera Alvarez Supervision, Resources, Writing—Review & Editing, Project administration, Funding acquisition. Guillermo R. Castro Supervision, Resources, Writing—Review & Editing, Project administration, Funding acquisition.

Corresponding authors

Correspondence to Verónica E. Passamai or Guillermo R. Castro.

Ethics declarations

Conflicts of interest

The authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file1 (TIF 486 KB)

Appendix 1

Appendix 1

Mean squared error (MSE).

$${MSE}_{x}=\frac{{\sigma }_{x}}{\sqrt{n}}$$
(6)

Propagation of error about Printability

$$Pr=\frac{{L}^{2}}{16*A}$$

\(= \underline{L}\pm {MSE}_{L}\) Perimeter

\(= \underline{A}\pm {MSE}_{A}\) Area

$$Err=\frac{\Delta Pr}{\underline{Pr}}$$
$$\Delta PrPr = \underline{Pr}*\left(\left|2\right|\frac{\Delta L}{L}+\left|-1\right|\frac{\Delta A}{A}\right)$$
$$Pr=\underline{Pr}\pm \Delta Pr$$
(7)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Passamai, V.E., Katz, S., Rodenak-Kladniew, B. et al. Pectin-based inks development for 3D bioprinting of scaffolds. J Polym Res 30, 35 (2023). https://doi.org/10.1007/s10965-022-03402-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10965-022-03402-x

Keywords

Navigation