Skip to main content
Log in

Reduced graphene oxide-modified polyvinyl alcohol hydrogel with potential application as skin wound dressings

  • Original Paper
  • Published:
Journal of Polymer Research Aims and scope Submit manuscript

Abstract

Traditional wound dressings rarely participate in accelerating active wound healing by stimulating skin cells. The use of a conductive wound dressing to promote the activity of electrically responsive cells is an effective means of accelerating wound healing. This article is describing the synthesis of physical conductive hydrogel of polyvinyl alcohol/reduced graphene oxide (PVA/rGO), and the characteristics of these electroactive dressings are evaluated. The resulting hydrogel demonstrates a denser pore size compared to PVA with improved compressive strength of 32.5 kPa. The pore sizes of PVA/rGO range between 7–45 μm, an average porosity is about 20 ± 11%, the water uptake ratio of the PVA/rGO is 187% ± 60%, and the evaporation rate is about 2020 g/m2.day. Which makes it a desirable template for fibroblast cell culture and wound dressing application. The electrical conductivity of the hydrogel was in the range of 0.7 to 0.8 mS, which is comparable to the electrical conductivity of human skin to facilitate intercellular signaling and current transmission from external electrical stimuli causing cell growth. MTT assays confirmed that the resulting PVA/rGO hydrogel was non-toxic toward human fibroblast cells with antibacterial properties against E. coli. introducing it a good candidate for wound healing applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4.
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Data Availability

All supporting the data are given in Table 1 and Fig. 10. The conductivity values of the samples are given in Table 1 and in Fig. 10, the supporting data for cell viability is shown related to the samples given in Figure 10. All statements have been presented based on the experiments and data shown in the manuscript.

References

  1. Zouboulis CC, Makrantonaki E (2011) Clinical aspects and molecular diagnostics of skin aging. Clin Dermatol 29:3–14. https://doi.org/10.1016/j.clindermatol.2010.07.001

    Article  Google Scholar 

  2. Vowden K, Vowden P (2017) Wound dressings: principles and practice. Surgery (Oxford) 35:489–494. https://doi.org/10.1016/j.mpsur.2017.06.005

    Article  Google Scholar 

  3. Sen CK, Gordillo GM, Roy S et al (2009) Human skin wounds: A major and snowballing threat to public health and the economy. Wound Repair Regen 17:763–771. https://doi.org/10.1111/j.1524-475X.2009.00543.x

    Article  Google Scholar 

  4. Li S, Wang L, Zheng W et al (2020) Rapid fabrication of self-healing, conductive, and injectable gel as dressings for healing wounds in stretchable parts of the body. Adv Funct Mater 30:2002370. https://doi.org/10.1002/adfm.202002370

    Article  CAS  Google Scholar 

  5. Murray CJL, Abbafati C, Abbas KM et al (2020) Five insights from the Global Burden of Disease Study 2019. The Lancet 396:1135–1159. https://doi.org/10.1016/S0140-6736(20)31404-5

    Article  Google Scholar 

  6. Peng W, Li D, Dai K et al (2022) Recent progress of collagen, chitosan, alginate and other hydrogels in skin repair and wound dressing applications. Int J Biol Macromol 208:400–408

    Article  CAS  Google Scholar 

  7. Boateng J, Catanzano O (2015) Advanced therapeutic dressings for effective wound healing—a review. J Pharm Sci 104:3653–3680. https://doi.org/10.1002/jps.24610

    Article  CAS  Google Scholar 

  8. Andreu V, Mendoza G, Arruebo M, Irusta S (2015) Smart dressings based on nanostructured fibers containing natural origin antimicrobial, anti-inflammatory, and regenerative compounds. Materials 8:5154–5193. https://doi.org/10.3390/ma8085154

    Article  Google Scholar 

  9. He M, Ou F, Wu Y et al (2020) Smart multi-layer PVA foam/ CMC mesh dressing with integrated multi-functions for wound management and infection monitoring. Mater Des 194:108913. https://doi.org/10.1016/j.matdes.2020.108913

    Article  CAS  Google Scholar 

  10. Rao KM, Sudhakar K, Suneetha M et al (2021) Fungal-derived carboxymethyl chitosan blended with polyvinyl alcohol as membranes for wound dressings. Int J Biol Macromol 190:792–800. https://doi.org/10.1016/j.ijbiomac.2021.09.034

    Article  CAS  Google Scholar 

  11. Alavarse AC, de Oliveira Silva FW, Colque JT et al (2017) Tetracycline hydrochloride-loaded electrospun nanofibers mats based on PVA and chitosan for wound dressing. Mater Sci Eng C 77:271–281. https://doi.org/10.1016/j.msec.2017.03.199

    Article  CAS  Google Scholar 

  12. Jin SG, Yousaf AM, Kim KS et al (2016) Influence of hydrophilic polymers on functional properties and wound healing efficacy of hydrocolloid based wound dressings. Int J Pharm 501:160–166. https://doi.org/10.1016/j.ijpharm.2016.01.044

    Article  CAS  Google Scholar 

  13. Barba BJD, Oyama TG, Taguchi M (2021) Simple fabrication of gelatin–polyvinyl alcohol bilayer hydrogel with wound dressing and nonadhesive duality. Polym Adv Technol 32:4406–4414. https://doi.org/10.1002/pat.5442

    Article  CAS  Google Scholar 

  14. Ziyadi H, Baghali M, Bagherianfar M et al (2021) An investigation of factors affecting the electrospinning of poly (vinyl alcohol)/kefiran composite nanofibers. Adv Compos Hybrid Mater 4:768–779. https://doi.org/10.1007/s42114-021-00230-3

    Article  CAS  Google Scholar 

  15. Liang Y, He J, Guo B (2021) Functional hydrogels as wound dressing to enhance wound healing. ACS Nano 15:12687–12722. https://doi.org/10.1021/acsnano.1c04206

    Article  CAS  Google Scholar 

  16. Williams BL, Ding H, Hou Z et al (2021) Highly efficient polyvinyl alcohol/montmorillonite flame retardant nanocoating for corrugated cardboard. Adv Compos Hybrid Mater 4:662–669. https://doi.org/10.1007/s42114-021-00299-w

    Article  CAS  Google Scholar 

  17. Li X, Chen K, Ji X et al (2020) Microencapsulation of poorly water-soluble finasteride in polyvinyl alcohol/chitosan microspheres as a long-term sustained release system for potential embolization applications. Eng Sci. https://doi.org/10.30919/es8d1159

  18. Wen N, Jiang B, Wang X et al (2020) Overview of polyvinyl alcohol nanocomposite hydrogels for electro-skin, actuator, supercapacitor and fuel cell. Chem Rec 20:773–792. https://doi.org/10.1002/tcr.202000001

    Article  CAS  Google Scholar 

  19. Khorasani MT, Joorabloo A, Moghaddam A et al (2018) Incorporation of ZnO nanoparticles into heparinised polyvinyl alcohol/chitosan hydrogels for wound dressing application. Int J Biol Macromol 114:1203–1215. https://doi.org/10.1016/j.ijbiomac.2018.04.010

    Article  CAS  Google Scholar 

  20. Tran PA, O’Brien-Simpson N, Palmer JA et al (2019) Selenium nanoparticles as anti-infective implant coatings for trauma orthopedics against methicillin-resistant Staphylococcus aureus and epidermidis: in vitro and in vivo assessment. Int J Nanomedicine 14:4613–4624. https://doi.org/10.2147/IJN.S197737

    Article  CAS  Google Scholar 

  21. Zhou G, Ruhan A, Ge H et al (2014) Research on a novel poly (vinyl alcohol)/lysine/vanillin wound dressing: Biocompatibility, bioactivity and antimicrobial activity. Burns 40:1668–1678. https://doi.org/10.1016/j.burns.2014.04.005

    Article  Google Scholar 

  22. Korupalli C, Li H, Nguyen N et al (2021) Conductive materials for healing wounds: Their incorporation in electroactive wound dressings, characterization, and perspectives. Adv Healthc Mater 10:2001384. https://doi.org/10.1002/adhm.202001384

    Article  CAS  Google Scholar 

  23. Zhao M (2009) Electrical fields in wound healing—An overriding signal that directs cell migration. Semin Cell Dev Biol 20:674–682. https://doi.org/10.1016/j.semcdb.2008.12.009

    Article  CAS  Google Scholar 

  24. Qiu Y, Wang Z, Owens ACE et al (2014) Antioxidant chemistry of graphene-based materials and its role in oxidation protection technology. Nanoscale 6:11744–11755. https://doi.org/10.1039/C4NR03275F

    Article  CAS  Google Scholar 

  25. Weaver CL, Cui XT (2015) Directed neural stem cell differentiation with a functionalized graphene oxide nanocomposite. Adv Healthc Mater 4:1408–1416. https://doi.org/10.1002/adhm.201500056

    Article  CAS  Google Scholar 

  26. Başgöz Ö, Güler SH, Güler Ö et al (2022) Synergistic effect of boron nitride and graphene nanosheets on behavioural attitudes of polyester matrix: Synthesis, experimental and Monte Carlo simulation studies. Diam Relat Mater 126:109095. https://doi.org/10.1016/j.diamond.2022.109095

    Article  CAS  Google Scholar 

  27. Daisy ERAC, Rajendran NK, Houreld NN et al (2020) Curcumin and Gymnema sylvestre extract loaded graphene oxide-polyhydroxybutyrate-sodium alginate composite for diabetic wound regeneration. React Funct Polym 154:104671. https://doi.org/10.1016/j.reactfunctpolym.2020.104671

    Article  CAS  Google Scholar 

  28. Frontiñán-Rubio J, Gómez MV, Martín C et al (2018) Differential effects of graphene materials on the metabolism and function of human skin cells. Nanoscale 10:11604–11615. https://doi.org/10.1039/C8NR00897C

    Article  Google Scholar 

  29. Banerjee AN (2018) Graphene and its derivatives as biomedical materials: Future prospects and challenges. Interface Focus 8. https://doi.org/10.1098/rsfs.2017.0056

  30. Zaaba NI, Foo KL, Hashim U et al (2017) Synthesis of graphene oxide using modified hummers method : solvent influence. Procedia Eng 184:469–477. https://doi.org/10.1016/j.proeng.2017.04.118

    Article  CAS  Google Scholar 

  31. Teodorescu M, Bercea M, Morariu S (2018) Biomaterials of poly(vinyl alcohol) and natural polymers. Polym Rev 58:247–287. https://doi.org/10.1080/15583724.2017.1403928

    Article  CAS  Google Scholar 

  32. Feldman D (2020) Poly(vinyl alcohol) recent contributions to engineering and medicine. Journal of Composites Science 4:175. https://doi.org/10.3390/jcs4040175

    Article  CAS  Google Scholar 

  33. Chen T, Hou K, Ren Q et al (2018) Nanoparticle-polymer synergies in nanocomposite hydrogels: from design to application. Macromol Rapid Commun 39:1800337. https://doi.org/10.1002/marc.201800337

    Article  CAS  Google Scholar 

  34. Pan H, Fan D, Zhu C et al (2019) Preparation of physically crosslinked PVA/HLC/SA hydrogel and exploration of its effects on full-thickness skin defects. Int J Polym Mater Polym Biomater 68:1048–1057. https://doi.org/10.1080/00914037.2018.1525547

    Article  CAS  Google Scholar 

  35. Yang J-H, Lee Y-D (2012) Highly electrically conductive rGO/PVA composites with a network dispersive nanostructure. J Mater Chem 22:8512. https://doi.org/10.1039/c2jm15398j

    Article  CAS  Google Scholar 

  36. Salavagione HJ, Martínez G, Gómez MA (2009) Synthesis of poly(vinyl alcohol)/reduced graphite oxide nanocomposites with improved thermal and electrical properties. J Mater Chem 19:5027. https://doi.org/10.1039/b904232f

    Article  CAS  Google Scholar 

  37. Liu H-W, Hu S-H, Chen Y-W, Chen S-Y (2012) Characterization and drug release behavior of highly responsive chip-like electrically modulated reduced graphene oxide–poly(vinyl alcohol) membranes. J Mater Chem 22:17311. https://doi.org/10.1039/c2jm32772d

    Article  CAS  Google Scholar 

  38. Zhang Q, Du Q, Zhao Y et al (2017) Graphene oxide-modified electrospun polyvinyl alcohol nanofibrous scaffolds with potential as skin wound dressings. RSC Adv 7:28826–28836. https://doi.org/10.1039/C7RA03997B

    Article  CAS  Google Scholar 

  39. Mahendia S, Heena KG et al (2016) Determination of glass transition temperature of reduced graphene oxide-poly(vinyl alcohol) composites using temperature dependent Fourier transform infrared spectroscopy. J Mol Struct 1111:46–54. https://doi.org/10.1016/j.molstruc.2016.01.072

    Article  CAS  Google Scholar 

  40. Sanchez LM, Shuttleworth PS, Waiman C et al (2020) Physically-crosslinked polyvinyl alcohol composite hydrogels containing clays, carbonaceous materials and magnetic nanoparticles as fillers. J Environ Chem Eng 8:103795. https://doi.org/10.1016/j.jece.2020.103795

    Article  CAS  Google Scholar 

  41. Yokoyama E, Masada I, Shimamura K, Ikawa T, Monobe K (1986) Morphology, repeated and structure of highly elastic poly (vinyl alcohol) hydrogel prepared by, freezing-and-melting. Colloid and Polymer Science 264:595–601. https://doi.org/10.1007/BF01412597

  42. Willcox PJ, Howie DW Jr, Schmidt-Rohr K, Hoagland D, Gido SP, Pudjijanto S, Kleiner LW, Venkatraman S (1999) Microstructure of poly(vinyl alcohol) hydrogels produced by freeze/thaw cycling. J Polym Sci B Polym Phys 37:3438–3454. https://doi.org/10.1002/(SICI)1099-0488(19991215)37:243.0.CO;2-9

  43. Shi Y, Xiong D, Li J, Wang N (2016) In situ reduction of graphene oxide nanosheets in poly(vinyl alcohol) hydrogel by γ-ray irradiation and its influence on mechanical and tribological properties. J Phys Chem C 120:19442–19453. https://doi.org/10.1021/acs.jpcc.6b05948

    Article  CAS  Google Scholar 

  44. Kim C, Park S-H, Cho J-I et al (2004) Raman spectroscopic evaluation of polyacrylonitrile-based carbon nanofibers prepared by electrospinning. J Raman Spectrosc 35:928–933. https://doi.org/10.1002/jrs.1233

    Article  CAS  Google Scholar 

  45. Wojtoniszak M, Chen X, Kalenczuk RJ et al (2012) Colloids and Surfaces B : Biointerfaces Synthesis, dispersion, and cytocompatibility of graphene oxide and reduced graphene oxide. Colloids Surf B Biointerfaces 89:79–85. https://doi.org/10.1016/j.colsurfb.2011.08.026

    Article  CAS  Google Scholar 

  46. Liu Y, Qi G, Liang C et al (2014) of stable self-assembled conductive reduced. 3846–3854. https://doi.org/10.1039/c3tc32586e

  47. Viet T, Hung V, Trung Q et al (2010) Photoluminescence and Raman studies of graphene thin fi lms prepared by reduction of graphene oxide. Mater Lett 64:399–401. https://doi.org/10.1016/j.matlet.2009.11.029

    Article  CAS  Google Scholar 

  48. Mamo MA, Sustaita AO, Coville NJ, Hümmelgen IA (2013) Polymer composite of poly ( vinyl phenol ) -reduced graphene oxide reduced by vitamin C in low energy consuming write-once – read-many times memory devices. Org Electron 14:175–181. https://doi.org/10.1016/j.orgel.2012.10.022

    Article  CAS  Google Scholar 

  49. Chen J, Shi X, Ren L, Wang Y (2016) Graphene oxide/PVA inorganic/organic interpenetrating hydrogels with excellent mechanical properties and biocompatibility. Carbon N Y. https://doi.org/10.1016/j.carbon.2016.07.038

    Article  Google Scholar 

  50. Wadhwa H, Kandhol G, Deshpande UP et al (2020) Thermal stability and dielectric relaxation behavior of in situ prepared poly(vinyl alcohol) (PVA)-reduced graphene oxide (RGO) composites. Colloid Polym Sci 298:1319–1333. https://doi.org/10.1007/s00396-020-04718-0

    Article  CAS  Google Scholar 

  51. Shi Y, Xiong D, Li J, Wang N (2016) The water-locking and cross-linking effects of graphene oxide on the load-bearing capacity of poly(vinyl alcohol) hydrogel. RSC Adv 6:82467–82477. https://doi.org/10.1039/C6RA21272G

    Article  CAS  Google Scholar 

  52. Heckman JJ, Pinto R, Savelyev PA (1967) Characterization of polymeric biomaterials

  53. Zou X, Kui X, Zhang R et al (2017) Viscoelasticity and structures in chemically and physically dual- cross-linked hydrogels: Insights from rheology and proton multiple-quantum NMR spectroscopy. Macromolecules 50(23):9340–9352. https://doi.org/10.1021/acs.macromol.7b01854

  54. Smith TJ, Kennedy JE, Higginbotham CL (2009) The rheological and thermal characteristics of freeze-thawed hydrogels containing hydrogen peroxide for potential wound healing applications. J Mech Behav Biomed Mater 2:264–271. https://doi.org/10.1016/j.jmbbm.2008.10.003

    Article  Google Scholar 

  55. Yang C, Xu L, Zhou Y et al (2010) A green fabrication approach of gelatin/CM-chitosan hybrid hydrogel for wound healing. Carbohydr Polym 82:1297–1305. https://doi.org/10.1016/j.carbpol.2010.07.013

    Article  CAS  Google Scholar 

  56. Electrochemical impedance spectroscopy Basics and applications, by Dr. Mirghasem Hosseini ICA 2010. No Title

  57. Shajaripour Jaberi SY, Ghaffarinejad A, Omidinia E (2019) An electrochemical paper based nano-genosensor modified with reduced graphene oxide-gold nanostructure for determination of glycated hemoglobin in blood. Anal Chim Acta 1078:42–52. https://doi.org/10.1016/j.aca.2019.06.018

    Article  CAS  Google Scholar 

  58. Taraghi I, Paszkiewicz S, Irska I et al (2021) Thin polymer films based on poly(vinyl alcohol) containing graphene oxide and reduced graphene oxide with functional properties. Polym Eng Sci 61:1685–1694. https://doi.org/10.1002/pen.25692

    Article  CAS  Google Scholar 

  59. Baghaie S, Khorasani MT, Zarrabi A, Moshtaghian J (2017) Wound healing properties of PVA/starch/chitosan hydrogel membranes with nano Zinc oxide as antibacterial wound dressing material. J Biomater Sci Polym Ed 28:2220–2241. https://doi.org/10.1080/09205063.2017.1390383

    Article  CAS  Google Scholar 

  60. Mousavi S, Khoshfetrat AB, Khatami N et al (2019) Comparative study of collagen and gelatin in chitosan-based hydrogels for effective wound dressing: Physical properties and fibroblastic cell behavior. Biochem Biophys Res Commun 518:625–631. https://doi.org/10.1016/j.bbrc.2019.08.102

    Article  CAS  Google Scholar 

  61. Wu M, Bao B, Yoshii F, Makuuchi K (2001) Irradiation of crosslinked, poly(vinyl alcohol) blended hydrogel for wound dressing. J Radioanal Nucl Chem 250:391–395. https://doi.org/10.1023/A:1017988822121

    Article  CAS  Google Scholar 

  62. Ur Rehman SR, Augustine R, Zahid AA et al (2019) Reduced graphene oxide incorporated gelma hydrogel promotes angiogenesis for wound healing applications. Int J Nanomedicine 14:9603–9617. https://doi.org/10.2147/IJN.S218120

    Article  Google Scholar 

  63. Liu S, Zeng TH, Hofmann M et al (2011) Antibacterial activity of graphite, graphite oxide, graphene oxide, and reduced graphene oxide: membrane and oxidative stress. 6971–6980. https://doi.org/10.1021/nn202451x

  64. Zhao M, Song B, Pu J et al (2006) Electrical signals control wound healing through phosphatidylinositol-3-OH kinase-γ and PTEN. Nature 442:457–460. https://doi.org/10.1038/nature04925

    Article  CAS  Google Scholar 

  65. Dong R, Ma PX, Guo B (2020) Conductive biomaterials for muscle tissue engineering. Biomaterials 229:119584. https://doi.org/10.1016/j.biomaterials.2019.119584

    Article  CAS  Google Scholar 

  66. Li M, Chen J, Shi M et al (2019) Electroactive anti-oxidant polyurethane elastomers with shape memory property as non-adherent wound dressing to enhance wound healing. Chem Eng J 375:121999. https://doi.org/10.1016/j.cej.2019.121999

    Article  CAS  Google Scholar 

  67. Hu T, Wu Y, Zhao X et al (2019) Micropatterned, electroactive, and biodegradable poly(glycerol sebacate)-aniline trimer elastomer for cardiac tissue engineering. Chem Eng J 366:208–222. https://doi.org/10.1016/j.cej.2019.02.072

    Article  CAS  Google Scholar 

  68. Li Y-S, Han Y, Qin J-T et al (2016) Photosensitive antibacterial and cytotoxicity performances of a TiO 2 /carboxymethyl chitosan/poly(vinyl alcohol) nanocomposite hydrogel by in situ radiation construction. J Appl Polym Sci 133. https://doi.org/10.1002/app.44150

  69. Liu S, Zeng TH, Hofmann M et al (2011) Antibacterial activity of graphite, graphite oxide, graphene oxide, and reduced graphene oxide: membrane and oxidative stress. ACS Nano 5:6971–6980. https://doi.org/10.1021/nn202451x

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Saeedeh Mazinani.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 1021 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khodaee, Z., Mazinani, S. & Sharif, F. Reduced graphene oxide-modified polyvinyl alcohol hydrogel with potential application as skin wound dressings. J Polym Res 30, 5 (2023). https://doi.org/10.1007/s10965-022-03384-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10965-022-03384-w

Keywords

Navigation