Skip to main content
Log in

Novel Aloe-Vera and allyl methacrylate-based antimicrobial copolymer nanoemulsion for coating: an in-situ approach

  • Original Paper
  • Published:
Journal of Polymer Research Aims and scope Submit manuscript

Abstract

In the investigation, the allyl methacrylate-based copolymer emulsion was synthesized via semi-continuous seeded emulsion polymerization utilizing Aloe-Vera and allyl methacrylate/butyl acrylate/methyl methacrylate and acrylic acid as monomers. Various characterization techniques such as SEM, FTIR, XRD, TGA, DTA, DSC, 1H and 13C NMR spectroscopy were used for the determination of surface morphological and characteristic properties of the prepared nanoemulsion. Some properties of prepared nanoemulsion such as solid content, tensile strength, % elongation, water resistance, freezing–thawing stability, alkali resistance and electrolytic stability were determined comprehensively. The obtained results showed tremendous improvement in the physical properties of nanoemulsion with a 70:30 ratio of the organic phase and water phase as well as showed the outstanding antimicrobial performance against two (G +) bacteria: MTCC442 & MTCC1144 and one (G–) bacteria: MTCC2474.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Data availability

The data will be available on request to valid reason.

References

  1. Park K (2007) Nanotechnology: What it can do for drug delivery. J control Release 120:1–3. https://doi.org/10.1016/j.jconrel.2007.05.003

    Article  CAS  Google Scholar 

  2. Wu Y, Li YH, Gao XH, Chen HD (2013) The application of nanoemulsion in dermatology: an overview. J drug target 21:321–327. https://doi.org/10.3109/1061186X.2013.765442

    Article  CAS  Google Scholar 

  3. Kumar S, Kaushik RD, Purohit LP (2022) ZnO-CdO nanocomposites incorporated with graphene oxide nanosheets for efficient photocatalytic degradation of bisphenol A, thymol blue and ciprofloxacin. J Hazard Mater 424:127332. https://doi.org/10.1016/j.jhazmat.2021.127332

    Article  CAS  Google Scholar 

  4. Walter MG, Warren EL et al (2010) Solar water splitting cells. Chem Rev 110:6446–6473. https://doi.org/10.1021/cr1002326

    Article  CAS  Google Scholar 

  5. Akhtar N, Khan BA et al (2011) Formulation development and moiturising effects of a topical cream of Aloe vera extract. World Acad Sci Eng Technol 51:172–179

    Google Scholar 

  6. Gupta PK, Bhandari N et al (2019) An update on nanoemulsions using nanosized liquid in liquid colloidal systems. Nanoemulsions-Proper Fabr Appl 1–20

    Google Scholar 

  7. Matsumoto A, Kodama K, Mori Y, Aota H (1998) Emulsion crosslinking polymerization of allyl methacrylate. J Macromol Sci Pure Appl Chem 35:1459–1472. https://doi.org/10.1080/10601329808007310

    Article  Google Scholar 

  8. Cheraghian G, Hendraningrat L (2016) A review on applications of nanotechnology in the enhanced oil recovery part A: effects of nanoparticles on interfacial tension. Int Nano Lett 6:129–138. https://doi.org/10.1007/s40089-015-0173-4

    Article  Google Scholar 

  9. Sadurní N, Solans C, Azemar N, García-Celma MJ (2005) Studies on the formation of O/W nano-emulsions, by low-energy emulsification methods, suitable for pharmaceutical applications. Eur J Pharm Sci 26:438–445. https://doi.org/10.1016/j.ejps.2005.08.001

    Article  CAS  Google Scholar 

  10. Matsumoto A, Shimatani T, Aota H (2000) Emulsion crosslinking polymerization of vinyl methacrylate as compared with allyl methacrylate. Polym J 32:871–875. https://doi.org/10.1295/polymj.32.871

    Article  CAS  Google Scholar 

  11. Bouvier-Fontes L, Pirri R, Asua JM, Leiza JR (2005) Seeded semicontinuous emulsion copolymerization of butyl acrylate with cross-linkers. Macromol 38:1164–1171. https://doi.org/10.1021/ma0482056

    Article  CAS  Google Scholar 

  12. París R, de la Fuente JL (2007) Gelation-free synthesis of poly (allyl methacrylate-co-butyl acrylate) copolymers by atom transfer radical polymerization. React Funct Polym 67:264–273. https://doi.org/10.1016/j.reactfunctpolym.2006.12.004

    Article  CAS  Google Scholar 

  13. Xu T, Liu J, Lu XB (2015) Highly active half-metallocene yttrium catalysts for living and chemoselective polymerization of allyl methacrylate. Macromol 48:7428–7434. https://doi.org/10.1021/acs.macromol.5b01517

    Article  CAS  Google Scholar 

  14. Leggat PA, Smith DR, Kedjarune U (2009) Surgical applications of methyl methacrylate: a review of toxicity. Arch Environ Occup health 64:207–212. https://doi.org/10.1080/19338240903241291

    Article  Google Scholar 

  15. Tomenson JA, Carpenter AV, Pemberton MA (2005) Critical review of the epidemiology literature on the potential cancer risks of methyl methacrylate. Int Arch Occup Environ health 78:603–612. https://doi.org/10.1007/s00420-005-0624-8

    Article  CAS  Google Scholar 

  16. Constantino DS, Faria RP, Ribeiro AM, Rodrigues AE (2019) Butyl acrylate production: A review on process intensification strategies. Chem Eng Process 142:107563. https://doi.org/10.1016/j.cep.2019.107563

    Article  CAS  Google Scholar 

  17. Chernikova EV, Yulusov VV, Garina ES, Kostina YV, Bondarenko GN, Nikolaev AY (2013) Controlled synthesis of styrene-n-butyl acrylate copolymers with various chain microstructures mediated by dibenzyl trithiocarbonate. Polym Sci Ser B 55:176–186. https://doi.org/10.1134/S1560090413040027

    Article  CAS  Google Scholar 

  18. Cooper G, Grieser F, Biggs S (1996) Butyl acrylate/vinyl acetate copolymer latex synthesis using ultrasound as an initiator. J Colloid Interface sci 184:52–63. https://doi.org/10.1006/jcis.1996.0596

    Article  CAS  Google Scholar 

  19. González I, Asua JM, Leiza JR (2007) The role of methyl methacrylate on branching and gel formation in the emulsion copolymerization of BA/MMA. Polym 48:2542–2547. https://doi.org/10.1016/j.polymer.2007.03.015

    Article  CAS  Google Scholar 

  20. Sosnowski S, Szymanski R, Lorandi F et al (2021) Distribution of alternating sequences in methyl methacrylate/n-butyl acrylate copolymers prepared by atom transfer radical polymerization. Macromolecules 54:9837–9849. https://doi.org/10.1021/acs.macromol.1c01930

    Article  CAS  Google Scholar 

  21. Matsumoto A, Kodama K, Aota H, Capek I (1999) Kinetics of emulsion crosslinking polymerization and copolymerization of allyl methacrylate. Eur Polym J 35:1509–1517. https://doi.org/10.1016/S0014-3057(98)00216-X

    Article  CAS  Google Scholar 

  22. Zhang H, Ruckenstein E (1997) Preparation of functional polymers by living anionic polymerization: Polymerization of allyl methacrylate. J Polym Sci A: Polym Chem 35:2901–2906. https://doi.org/10.1002/(SICI)1099-0518(199710)35:14%3c2901::AID-POLA10%3e3.0.CO;2-N

    Article  CAS  Google Scholar 

  23. Geetanjali R, Sreejit V, Sandip P, Preetha R (2021) Preparation of aloe vera mucilage-ethyl vanillin Nano-emulsion and its characterization. Mater Today: Proc 43:3766–3773. https://doi.org/10.1016/j.matpr.2020.10.990

    Article  CAS  Google Scholar 

  24. Chakraborty T, Gupta S, Nair A, Chauhan S, Saini V (2021) Wound healing potential of insulin-loaded nanoemulsion with Aloe vera gel in diabetic rats. J Drug Deliv Sci Technol 64:102601. https://doi.org/10.1016/j.jddst.2021.102601

    Article  CAS  Google Scholar 

  25. Zhang XF, Wang H et al (2006) Isolation, structure elucidation, antioxidative and immunomodulatory properties of two novel dihydrocoumarins from Aloe vera. Bioorg Med Chem Lett 16:949–953. https://doi.org/10.1016/j.bmcl.2005.10.096

    Article  CAS  Google Scholar 

  26. Shahrezaee M, Soleimanian-Zad S, Soltanizadeh N, Akbari-Alavijeh S (2018) Use of Aloe vera gel powder to enhance the shelf life of chicken nugget during refrigeration storage. LWT 95:380–386. https://doi.org/10.1016/j.lwt.2018.04.066

    Article  CAS  Google Scholar 

  27. Anjum S, Gupta A et al (2016) Development of novel wound care systems based on nanosilver nanohydrogels of polymethacrylic acid with Aloe vera and Curcumin. Mater Sci Eng C 64:157–166. https://doi.org/10.1016/j.msec.2016.03.069

    Article  CAS  Google Scholar 

  28. Esmaeili A, Ebrahimzadeh M (2015) Preparation of polyamide nanocapsules of Aloe vera L. delivery with in vivo studies. AAPS Pharm Sci Tech 16:242–249. https://doi.org/10.1208/s12249-014-0203-y

    Article  CAS  Google Scholar 

  29. Esmaeili A, Ebrahimzadeh M (2015) Polymer-based of extract-loaded nanocapsules Aloe vera L. delivery. Synth React Inorg, Met-Org, Nano-Met Chem 45:40–47. https://doi.org/10.1080/15533174.2013.818027

    Article  CAS  Google Scholar 

  30. Popa S, Mosoarca G et al (2022) Copolymerization of butyl acrylate with methyl methacrylate in a bubble column reactor and the use of copolymer in corrosion protection. Polym Bull 79:763–783. https://doi.org/10.1007/s00289-020-03502-y

    Article  CAS  Google Scholar 

  31. Mishra S, Singh J, Choudhary V (2010) Synthesis and characterization of butyl acrylate/methyl methacrylate/glycidyl methacrylate latexes. J Appl Polym sci 115:549–557. https://doi.org/10.1002/app.30963

    Article  CAS  Google Scholar 

  32. Greving N, Keul H, Millaruelo M, Weberskirch R, Moeller M (2013) Synthesis of α, ω-isocyanate-telechelic poly (methyl methacrylate-co-allyl methacrylate) soft segments. Eur Polym J 49:235–246. https://doi.org/10.1016/j.eurpolymj.2012.09.018

    Article  CAS  Google Scholar 

  33. Bozzi A, Perrin C, Austin S, Vera FA (2001) Quality and authenticity of commercial aloe vera gel powders. Food chem 103:22–30. https://doi.org/10.1016/j.foodchem.2006.05.061

    Article  CAS  Google Scholar 

  34. Davis B, Goux WJ (2009) Single-laboratory validation of an NMR method for the determination of Aloe vera polysaccharide in pharmaceutical formulations. J AOAC Int 92:1607–1616. https://doi.org/10.1093/jaoac/92.6.1607

    Article  CAS  Google Scholar 

  35. McManus NT, Penlidis A (2007) NMR analysis of butyl acrylate/methylmethacrylate/α-methyl styrene terpolymers. J Appl Polym sci 103:2093–2098. https://doi.org/10.1002/app.24469

    Article  CAS  Google Scholar 

  36. Aerdts AM, German AL, Vander Velden GPM (1994) Determination of the reactivity ratios, sequence distribution and stereoregularity of butyl acrylate-methyl methacrylate copolymers by means of proton and carbon-13 NMR. Magn Reson Chem 32:S80–S88. https://doi.org/10.1002/mrc.1260321315

    Article  CAS  Google Scholar 

  37. Vardareli TK, Keski S, Usanmaz A (2008) Synthesis and characterization of poly (allyl methacrylate) obtained by free radical initiator. J Macromol Sci A Pure Appl Chem 45:302–311. https://doi.org/10.1080/10601320701863783

    Article  CAS  Google Scholar 

  38. Pi P, Wang W, Wen X, Xu S, Cheng J (2015) Synthesis and characterization of low-temperature self-crosslinkable acrylic emulsion for PE film ink. Prog Org coat 81:66–71. https://doi.org/10.1016/j.porgcoat.2014.12.006

    Article  CAS  Google Scholar 

  39. Shanti R, Bella F, Salim YS, Chee SY, Ramesh S, Ramesh K (2016) Poly (methyl methacrylate-co-butyl acrylate-co-acrylic acid): Physico-chemical characterization and targeted dye sensitized solar cell application. Mater Des 108:560–569. https://doi.org/10.1016/j.matdes.2016.07.021

    Article  CAS  Google Scholar 

  40. Li P, Zhou Z, Ma W, Hao T (2016) Core–shell emulsion polymerization of styrene and butyl acrylate in the presence of polymerizable emulsifier. J Appl Polym Sci. https://doi.org/10.1002/app.43091

    Article  Google Scholar 

  41. Rodrigues LD, Hurtado CR (2020) Colloidal properties and cytotoxicity of enzymatically hydrolyzed cationic starch-graft-poly (butyl acrylate-co-methyl methacrylate) latex by surfactant-free emulsion polymerization for paper coating application. Prog Org Coat 145:105693. https://doi.org/10.1016/j.porgcoat.2020.105693

    Article  CAS  Google Scholar 

  42. Sekak KA, Ahmad MR, Bustami Effendi TJ (2014) Characteristics of electrospun PVA-Aloe vera nanofibres produced via electrospinning. In Proceedings of the international colloquium in textile engineering. Fashion Apparel Des 7–11. https://doi.org/10.1007/978-981-287-011-7_2

    Article  Google Scholar 

  43. Joshy KS, Sharma CP et al (2016) Evaluation of in-vitro cytotoxicity and cellular uptake efficiency of zidovudine-loaded solid lipid nanoparticles modified with Aloe Vera in glioma cells. Mater Sci Eng C 66:40–50. https://doi.org/10.1016/j.msec.2016.03.031

    Article  CAS  Google Scholar 

  44. Mulu T, Teshale F, Gemeda S, Sahu O (2015) Medicated evaluation of Aloe vera: Overview on characteristics and application. World J Nutr Health 3:1–7. https://doi.org/10.12691/jnh-3-1-1

    Article  Google Scholar 

  45. Yu H, Peng J, Zhai M, Li J, Wei G, Qiao J (2007) Synthesis and characterization of poly (n-butyl acrylate)-poly (methyl methacrylate) latex interpenetrating polymer networks by radiation-induced seeded emulsion polymerization. Radiat Phys Chem 76:1746–1750. https://doi.org/10.1016/j.radphyschem.2007.02.088

    Article  CAS  Google Scholar 

  46. Giebel E, Getze J, Röcker T, Greiner A (2013) The importance of crosslinking and glass transition temperature for the mechanical strength of nanofibers obtained by green electrospinning. Macromol Mater Eng 298:439–446. https://doi.org/10.1002/mame.201200080

    Article  CAS  Google Scholar 

  47. Avc MZ, Sarac AS (2013) Transparent poly (methyl methacrylate-co-butyl acrylate) nanofibers. J Appl Polym Sci 130:4264–4272. https://doi.org/10.1002/app.39705

    Article  CAS  Google Scholar 

  48. Sharma S, Poddar MK, Moholkar VS (2017) Enhancement of thermal and mechanical properties of poly (MMA-co-BA)/Cloisite 30B nanocomposites by ultrasound-assisted in-situ emulsion polymerization. Ultrason Sonochem 36:l212–225. https://doi.org/10.1016/j.ultsonch.2016.11.029

    Article  CAS  Google Scholar 

  49. Gumfekar SP, Kunte KJ, Ramjee L, Kate KH, Sonawane SH (2011) Synthesis of CaCO3–P (MMA–BA) nanocomposite and its application in water based alkyd emulsion coating. Prog Org Coat 72:632–637. https://doi.org/10.1016/j.porgcoat.2011.07.005

    Article  CAS  Google Scholar 

  50. Pishvaei M, Farshchi TF (2010) Synthesis of high solid content polyacrylate/nanosilica latexes via miniemulsion polymerization. Iran Polym J 19:707–716

    CAS  Google Scholar 

  51. Kumar R, Ali SA, Singh P, De U, Virk HS, Prasad R (2011) Physical and chemical response of 145 MeV Ne6+ ion irradiated polymethylmethacrylate (PMMA) polymer. Nucl Instrum Methods Phys Res B: Beam Interact Mater At 269:1755–1759. https://doi.org/10.1016/j.nimb.2010.12.025

    Article  CAS  Google Scholar 

  52. Guo G, Yu J, Luo Z, Zhou L, Liang H, Luo F, Qian Z (2011) Synthesis and characterization of poly (methyl methacrylate–butyl acrylate)/nano-titanium oxide composite particles. J Nanosci Nanotechnol 11:4923–4928. https://doi.org/10.1166/jnn.2011.4119

    Article  CAS  Google Scholar 

  53. Bajer D, Janczak K, Bajer K (2020) Novel starch/chitosan/aloe vera composites as promising biopackaging materials. J Polym Environ 28:1021–1039. https://doi.org/10.1007/s10924-020-01661-7

    Article  CAS  Google Scholar 

  54. Rana SM, Al Amin R et al (2015) Application of Aloe vera gel instead of silicon dioxide as organic dielectric material in microelectronics. Mater Sci Pol 33:635–638. https://doi.org/10.1515/msp-2015-0069

    Article  CAS  Google Scholar 

  55. Liu X, Zeng W et al (2021) Preparation and anti-leakage properties of hydroxyethyl cellulose-g-poly(butyl acrylate-co-vinyl acetate) emulsion. Carbohydr Polym 255:117467. https://doi.org/10.1016/j.carbpol.2020.117467

    Article  CAS  Google Scholar 

  56. Buruga K, Kalathi JT (2019) Synthesis of poly (styrene-co-methyl methacrylate) nanospheres by ultrasound-mediated Pickering nanoemulsion polymerization. J Polym Res 26:1–11. https://doi.org/10.1007/s10965-019-1871-9

    Article  CAS  Google Scholar 

  57. Wu X, Li J, Wang J, Cao L (2020) Poly(butyl acrylate) gel prepared in supercritical CO2: an efficient recyclable oil-absorbent. Int J Ind Chem 11:91–99. https://doi.org/10.1007/s40090-020-00204-2

    Article  Google Scholar 

  58. Zhang C, Yang D, Zhang T, Qiu F, Dai Y, Xu J, Jing Z (2017) Synthesis of MnO2/poly(n-butylacrylate-co-butyl methacrylate-comethyl methacrylate) hybrid resins for efficient oils and organic solvents absorption. J Clean Prod 148:398–406. https://doi.org/10.1016/j.jclepro.2017.02.009

    Article  CAS  Google Scholar 

  59. Singh J, Chawla M, Kaushik RD (2018) Preparation and characterization of acrylic emulsion paints formulated from nano-emulsion of methylmetacrylate/butyl acrylate. ESSENCE Int J Env Rehab Conserv IX:55–60

    Article  Google Scholar 

  60. Chun KS, Husseinsyah S, Osman H (2012) Mechanical and thermal properties of coconut shell powder filled polylactic acid biocomposites: effects of the filler content and silane coupling agent. J Polym Res 19:1–8. https://doi.org/10.1007/s10965-012-9859-8

    Article  CAS  Google Scholar 

  61. El-Wahab A, Attia M, Hassan WA, Nasser AM (2018) Water borne coating based on new nano-copolymers (styrene/2-ethyl hexyl acrylate). Al-Azhar Bulletin Sci 29:39–53. https://doi.org/10.21608/absb.2018.33768

    Article  Google Scholar 

  62. Singh DP, Kumar K, Dhiman SS, Sharma J (2010) Antibacterial and antifungal studies of macrocyclic complexes of trivalent transition metal ions with their spectroscopic approach. J Enzyme Inhib Med Chem 25:21–28. https://doi.org/10.3109/14756360902932750

    Article  CAS  Google Scholar 

  63. Krishnamoorthy R, Athinarayanan J, Periasamy VS, Adisa AR, Al-Shuniaber MA, Gassem MA, Alshatwi AA (2018) Antimicrobial activity of nanoemulsion on drug-resistant bacterial pathogens. Microb Pathog 01–43. https://doi.org/10.1016/j.micpath.2018.04.035

    Article  CAS  Google Scholar 

  64. Kayar F, Doymus M et al (2022) Preparation of chitosan with high antibacterial efciency from penicillium crustosum TZ18. J Polym Environ. https://doi.org/10.1007/s10924-022-02458-6

    Article  Google Scholar 

Download references

Acknowledgements

Central instrumentation facility of Jamia Milia University New Delhi and Aligarh Muslim University are acknowledged for providing DTA/TGA and SEM with EDX, 1H, 13C NMR facility. Lovely Professional university, Punjab, acknowledged for providing the XRD facility.

Funding

There was no funding for this study from any government, commercial, or non-profit organizations.

Author information

Authors and Affiliations

Authors

Contributions

Payal Devi: Investigation, Writing, Editing, Characterization & Analysis. R. D. Kaushik: Characterization. Hafeezur Rehmaan: Characterization. Jaspal Singh: Supervision, Writing & editing, Characterization & Analysis.

Corresponding author

Correspondence to Jaspal Singh.

Ethics declarations

Conflict of interest

There are no conflicts of interest declared by any of the authors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Highlights

• Aloe-Vera solution was extracted from leaves of aloe vera plants and concentrated with help of rotamentle.

• Aloe-Vera and allyl base nanoemulsion was synthesized via semi-continuous seeded emulsion polymerization.

• Antimicrobial properties of nanoemulsion were enhanced by Aloe-Vera.

• Improve the mechanical properties of Aloe-Vera and allyl base nanoemulsion film.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 286 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Devi, P., Singh, J., Rehmaan, H. et al. Novel Aloe-Vera and allyl methacrylate-based antimicrobial copolymer nanoemulsion for coating: an in-situ approach. J Polym Res 29, 511 (2022). https://doi.org/10.1007/s10965-022-03339-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10965-022-03339-1

Keywords

Navigation