Skip to main content
Log in

Influence of initial composition of casting solution on morphology of porous thin polymer films produced via phase separation

  • Original Paper
  • Published:
Journal of Polymer Research Aims and scope Submit manuscript

Abstract

In this study, variation in the thermodynamic and kinetic properties of the casting solution achieved by tailoring initial composition (IC) of the polymer–solvent-nonsolvent ternary mixture is investigated to engineer pores in a polymer film prepared by liquid–liquid phase separation (LLPS). The driving force for liquid–liquid phase separation, identified as thermodynamic enhancement factor (TE), is observed to influence the LLPS rate. At an IC closer to the phase boundary, the LLPS rate is higher. The kinetic restraint (KR), which is dictated by the viscosity of the casting solution, also alters the LLPS rate. The interplay of these two opposing factors determines the final film morphology. The higher LLPS rate obtained from a larger TE value leads to finger-like pore structure, while lowering LLPS rate by considering a casting solution with lower TE results in polymer film with spherical sponge-like pores irrespective of casting solution viscosity. On the other hand, when the concentration of both the polymer and nonsolvent is high, i.e., for high KR value, polymer film with interconnected pores and higher pore number density are obtained.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Data availability

The data that supports the findings in this study are available within the article.

References

  1. Fink Y, Urbas AM, Bawendi MG, Joannopoulos JD, Thomas EL (1999) Block copolymers as photonic bandgap materials. J Lightwave Technol 17(11):1963–1969

    Article  CAS  Google Scholar 

  2. Beattie D, Wong KH, Williams C, Poole-Warren LA, Davis TP, Barner-Kowollik C, Stenzel MH (2006) Honeycomb-structured porous films from polypyrrole-containing block copolymers prepared via raft polymerization as a scaffold for cell growth. Biomacromol 7(4):1072–1082

    Article  CAS  Google Scholar 

  3. Xiang Z, Cao D (2013) Porous covalent–organic materials: synthesis, clean energy application and design. J Mater Chem A 1(8):2691–2718

    Article  CAS  Google Scholar 

  4. Prasanth R, Shubha N, Hng HH, Srinivasan M (2013) Effect of nano-clay on ionic conductivity and electrochemical properties of poly (vinylidene fluoride) based nanocomposite porous polymer membranes and their application as polymer electrolyte in lithium ion batteries. Eur Polymer J 49(2):307–318

    Article  CAS  Google Scholar 

  5. Wang W, Zhou M, Yuan D (2017) Carbon dioxide capture in amorphous porous organic polymers. J Mater Chem A 5(4):1334–1347

    Article  Google Scholar 

  6. Kim S, Lee YM (2015) Rigid and microporous polymers for gas separation membranes. Prog Polym Sci 43:1–32

    Article  CAS  Google Scholar 

  7. Kaur P, Hupp JT, Nguyen ST (2011) Porous organic polymers in catalysis: opportunities and challenges. ACS Catal 1(7):819–835

    Article  CAS  Google Scholar 

  8. Pervin R, Ghosh P, Basavaraj MG (2019) Tailoring pore distribution in polymer films via evaporation induced phase separation. RSC Adv 9(27):15593–15605

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Kesting R (1973) Concerning the microstructure of dry-ro membranes. J Appl Polym Sci 17(6):1771–1785

    Article  CAS  Google Scholar 

  10. Jansen J, Macchione M, Drioli E (2005) High flux asymmetric gas separation membranes of modified poly (ether ether ketone) prepared by the dry phase inversion technique. J Membr Sci 255(1–2):167–180

    Article  CAS  Google Scholar 

  11. Matsuyama H, Teramoto M, Uesaka T (1997) Membrane formation and structure development by dry-cast process. J Membr Sci 135(2):271–288

    Article  CAS  Google Scholar 

  12. Ulbricht M (2006) Advanced functional polymer membranes. Polymer 47(7):2217–2262

    Article  CAS  Google Scholar 

  13. Loeb S (1981) The loeb-sourirajan membrane: How it came about, pp. 1–9. ACS Publications. Chap. 1

  14. Reuvers A, Smolders C (1987) Formation of membranes by means of immersion precipitation: Part ii the mechanism of formation of membranes prepared from the system cellulose acetate-acetone-water. J Membr Sci 34(1):67–86

    Article  CAS  Google Scholar 

  15. Buonomenna M, Macchi P, Davoli M, Drioli E (2007) Poly (vinylidene fluoride) membranes by phase inversion: the role the casting and coagulation conditions play in their morphology, crystalline structure and properties. Eur Polymer J 43(4):1557–1572

    Article  CAS  Google Scholar 

  16. Guillen GR, Pan Y, Li M, Hoek EM (2011) Preparation and characterization of membranes formed by nonsolvent induced phase separation: a review. Ind Eng Chem Res 50(7):3798–3817

    Article  CAS  Google Scholar 

  17. Young T-H, Huang J-H, Chuang W-Y (2002) Effect of evaporation temperature on the formation of particulate membranes from crystalline polymers by dry-cast process. Eur Polymer J 38(1):63–72

    Article  CAS  Google Scholar 

  18. Nguyen QT, Alaoui OT, Yang H, Mbareck C (2010) Dry-cast process for synthetic microporous membranes: Physico-chemical analyses through morphological studies. J Membr Sci 358(1–2):13–25

    Article  CAS  Google Scholar 

  19. Phong HQ, Wang S-L, Wang M-J (2010) Cell behaviors on micropatterned porous thin films. Mater Sci Eng, B 169(1–3):94–100

    Article  CAS  Google Scholar 

  20. Wang Y, Liu Z, Huang Y, Han B, Yang G (2006) Micropatterned polymer surfaces induced by nonsolvent. Langmuir 22(4):1928–1931

    Article  CAS  PubMed  Google Scholar 

  21. Altinkaya SA, Yenal H, Ozbas B (2005) Membrane formation by drycast process: model validation through morphological studies. J Membr Sci 249(1–2):163–172

    Article  CAS  Google Scholar 

  22. Pervin R, Ghosh P, Basavaraj MG (2021) Engineering polymer film porosity for solvent triggered actuation. Soft Matter 17(10):2900–2912

    Article  CAS  PubMed  Google Scholar 

  23. Kesting RE (1985) Phase inversion membranes, 131–164. Chap. 7

  24. Van de Witte P, Dijkstra P, Van den Berg J, Feijen J (1996) Phase separation processes in polymer solutions in relation to membrane formation. J Membr Sci 117(1–2):1–31

    Article  Google Scholar 

  25. Matsuyama H, Nishiguchi M, Kitamura Y (2000) Phase separation mechanism during membrane formation by dry-cast process. J Appl Polym Sci 77(4):776–783

    Article  CAS  Google Scholar 

  26. Schuhmacher E, Soldi V, Pires ATN (2001) Pmma or peo in thf/h2o mixture: phase diagram, separation mechanism and application. J Membr Sci 184(2):187–196

    Article  CAS  Google Scholar 

  27. Altinkaya SA, Ozbas B (2004) Modeling of asymmetric membrane formation by dry-casting method. J Membr Sci 230(1–2):71–89

    Article  CAS  Google Scholar 

  28. Arya RK (2012) Drying induced phase separation. J Chem Eng 27:12–20

    Article  Google Scholar 

  29. Shojaie SS, Krantz WB, Greenberg AR (1994) Dense polymer film and membrane formation via the dry-cast process. Part II. Model validation and morphological studies. J Membr Sci 94(1):281–298

    Article  CAS  Google Scholar 

  30. Sadrzadeh M, Bhattacharjee S (2013) Rational design of phase inversion membranes by tailoring thermodynamics and kinetics of casting solution using polymer additives. J Membr Sci 441:31–44

    Article  CAS  Google Scholar 

  31. Zheng Q-Z, Wang P, Yang Y-N (2006) Rheological and thermodynamic variation in polysulfone solution by peg introduction and its effect on kinetics of membrane formation via phase-inversion process. J Membr Sci 279(1–2):230–237

    Article  CAS  Google Scholar 

  32. Han M-J, Nam S-T (2002) Thermodynamic and rheological variation in polysulfone solution by pvp and its effect in the preparation of phase inversion membrane. J Membr Sci 202(1–2):55–61

    Article  CAS  Google Scholar 

  33. Lee K-W, Seo B-K, Nam S-T, Han M-J (2003) Trade-off between thermodynamic enhancement and kinetic hindrance during phase inversion in the preparation of polysulfone membranes. Desalination 159(3):289–296

    Article  CAS  Google Scholar 

  34. Wang Z, Gao K, Kan Y, Zhang M, Qiu C, Zhu L, Zhao Z, Peng X, Feng W, Qian Z et al (2021) The coupling and competition of crystallization and phase separation, correlating thermodynamics and kinetics in opv morphology and performances. Nat Commun 12(1):1–14

    Google Scholar 

  35. Albrecht W, Weigel T, Schossig-Tiedemann M, Kneifel K, Peinemann K-V, Paul D (2001) Formation of hollow fiber membranes from poly (ether imide) at wet phase inversion using binary mixtures of solvents for the preparation of the dope. J Membr Sci 192(1–2):217–230

    Article  CAS  Google Scholar 

  36. Shieh J-J, Chung TS (1998) Effect of liquid-liquid demixing on the membrane morphology, gas permeation, thermal and mechanical properties of cellulose acetate hollow fibers. J Membr Sci 140(1):67–79

    Article  CAS  Google Scholar 

  37. Strathmann H, Kock K (1977) The formation mechanism of phase inversion membranes. Desalination 21(3):241–255

    Article  CAS  Google Scholar 

  38. Strathmann H, Scheible P, Baker R (1971) A rationale for the preparation of loeb-sourirajan-type cellulose acetate membranes. J Appl Polym Sci 15(4):811–828

    Article  Google Scholar 

  39. So M, Eirich F, Strathmann H, Baker R (1973) Preparation of asymmetric loeb-sourirajan membranes. J Polym Sci Polym Lett Ed 11(3):201–205

    Article  CAS  Google Scholar 

  40. Smolders C, Reuvers A, Boom R, Wienk I (1992) Microstructures in phase-inversion membranes. Part 1. Formation of macrovoids. J Membr Sci 73(2–3):259–275

    Article  CAS  Google Scholar 

  41. Van der Bruggen B (2018) Fundamental modelling of membrane systems, pp. 25–70. Elsevier. Chap. 2

  42. Strathmann H, Kock K, Amar P, Baker R (1975) The formation mechanism of asymmetric membranes. Desalination 16(2):179–203

    Article  CAS  Google Scholar 

  43. Xu H, Zheng X, Huang Y, Wang H, Du Q (2016) Interconnected porous polymers with tunable pore throat size prepared via pickering high internal phase emulsions. Langmuir 32(1):38–45

    Article  CAS  PubMed  Google Scholar 

  44. Silverstein MS (2014) Polyhipes: Recent advances in emulsion-templated porous polymers. Prog Polym Sci 39(1):199–234

    Article  CAS  Google Scholar 

  45. Kim JH, Min BR, Won J, Park HC, Kang YS (2001) Phase behavior and mechanism of membrane formation for polyimide/dmso/water system. J Membr Sci 187(1–2):47–55

    Article  CAS  Google Scholar 

  46. Yamamura M, Horiuchi K, Kajiwara T, Adachi K (2002) Decrease in solvent evaporation rate due to phase separation in polymer films. AIChE J 48(11):2711–2714

    Article  CAS  Google Scholar 

  47. Patsis A, Henriques E, Frisch H (1990) Interdiffusion in complex polymer systems used in the formation of microporous coatings. J Polym Sci, Part B Polym Phys 28(13):2681–2689

    Article  CAS  Google Scholar 

  48. Roesink HDW (1989) Microfiltration: membrane development and module design, phd thesis

  49. Loeb S, Sourirajan S (1962) Sea water demineralization by means of an osmotic membrane, pp. 117–132. ACS Publications. Chap. 9

  50. Rautenbach R, Vossenkaul K, Linn T, Katz T (1997) Waste water treatment by membrane processes—new development in ultrafiltration, nanofiltration and reverse osmosis. Desalination 108(1–3):247–253

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We would like to acknowledge the high resolution scanning electron microscopy (HR-SEM) facility (procured through a DST-FIST grant) at the Department of Chemical Engineering, IIT-Madras.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Madivala G. Basavaraj.

Ethics declarations

Conflicts of interest

There are no conflicts to declare.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pervin, R., Ghosh, P. & Basavaraj, M.G. Influence of initial composition of casting solution on morphology of porous thin polymer films produced via phase separation. J Polym Res 29, 486 (2022). https://doi.org/10.1007/s10965-022-03325-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10965-022-03325-7

Keywords

Navigation