Skip to main content
Log in

Tensile performance of NCC and lignin reinforcements in PAN matrix

  • Original Paper
  • Published:
Journal of Polymer Research Aims and scope Submit manuscript

Abstract

A novel, hybrid polymer composite wherein hydrophilic nanocrystalline cellulose (NCC) and hydrophobic lignin particles are reinforced into hydrophobic acrylic fiber based polyacrylonitrile (PAN) matrix is fabricated by the spin-casting technique. The discrete and synergetic influence of NCC and lignin on the PAN matrix was compared and studied on the basis of the assessment of the tensile properties of the composite films. It was observed that incorporation of NCC and lignin in the ratio of 50:50 into the PAN matrix enhanced its tensile strength and Young’s modulus by 55% and 223% respectively. Individual comparison of FTIR spectra was performed to understand the structural aspects of neat PAN and PAN composite films incorporated with NCC, lignin, and blends of NCC and lignin. Further, the composite films were assessed for physical properties such as density, viscosity, and contact angle. The impact of NCC and lignin loading on the surface morphology of the PAN matrix has been evaluated using SEM imaging tool. The thermal stability behaviour of the neat PAN film and PAN composite film was comprehended using TG analysis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Nabi Saheb D, Jog JP (1999) Natural fiber polymer composites: A review. Adv Polym Technol. https://doi.org/10.1002/(SICI)1098-2329(199924)18:4%3c351::AID-ADV6%3e3.0.CO;2-X

    Article  Google Scholar 

  2. Loginova EV, Mikheev IV, Volkov DS, Proskurnin MA (2016) Quantification of copolymer composition (methyl acrylate and itaconic acid) in polyacrylonitrile carbon-fiber precursors by FTIR-spectroscopy. Anal Methods. https://doi.org/10.1039/c5ay02264a

    Article  Google Scholar 

  3. Khalid MY, Al Rashid A, Arif ZU, Ahmed W, Arshad H (2021) Recent advances in nanocellulose-based different biomaterials: types, properties, and emerging applications. J Mater Res Technol. https://doi.org/10.1016/j.jmrt.2021.07.128

    Article  Google Scholar 

  4. Abdul Rashid ES, Muhd Julkapli N, Yehye WA (2018) Nanocellulose reinforced as green agent in polymer matrix composites applications. Polym. Adv. Technol. https://doi.org/10.1002/pat.4264

  5. Gan PG, Sam ST, Abdullah MF, Omar MF (2020) Thermal properties of nanocellulose-reinforced composites: A review. J Appl Polym Sci. https://doi.org/10.1002/app.48544

    Article  Google Scholar 

  6. Kim JH, Shim BS, Kim HS, Lee YJ, Min SK, Jang D, Abas Z, Kim J (2015) Review of nanocellulose for sustainable future materials. J Precis Eng Manuf - Green Technol. https://doi.org/10.1007/s40684-015-0024-9

    Article  Google Scholar 

  7. Ilyas RA, Sapuan SM, Sanyang ML, Ishak MR, Zainudin ES (2018) Nanocrystalline cellulose as reinforcement for polymeric matrix nanocomposites and its potential applications: a review. Curr Anal Chem. https://doi.org/10.2174/1573411013666171003155624

    Article  Google Scholar 

  8. Geng S, Wei J, Aitomäki Y, Noël M, Oksman K (2018) Well-dispersed cellulose nanocrystals in hydrophobic polymers by in situ polymerization for synthesizing highly reinforced bio-nanocomposites. Nanoscale. https://doi.org/10.1039/c7nr09080c

    Article  PubMed  PubMed Central  Google Scholar 

  9. Wang X, Jia Y, Liu Z, Miao J (2018) Influence of the lignin content on the properties of poly (lactic acid)/lignin-containing cellulose nanofibrils composite films. Polymers. https://doi.org/10.3390/polym10091013

    Article  PubMed  PubMed Central  Google Scholar 

  10. Yang J, Ching YC, Chuah CH (2019) Applications of lignocellulosic fibers and lignin in bioplastics: A review. Polymers. https://doi.org/10.3390/polym11050751

    Article  PubMed  PubMed Central  Google Scholar 

  11. Wang J, Chen W, Dong T, Wang H, Si S, Li X (2021) Enabled cellulose nanopaper with outstanding water stability and wet strength via activated residual lignin as a reinforcement. Green Chem. https://doi.org/10.1039/d1gc03906g

    Article  PubMed  PubMed Central  Google Scholar 

  12. Wei L, Agarwal UP, Matuana L, Sabo RC, Stark NM (2018) Performance of high lignin content cellulose nanocrystals in poly (lactic acid). Polymer. https://doi.org/10.1016/j.polymer.2017.12.039

    Article  Google Scholar 

  13. Xiong R, Zhang X, Tian D, Zhou Z, Lu C (2012) Comparing microcrystalline with spherical nanocrystalline cellulose from waste cotton fabrics. Cellulose. https://doi.org/10.1007/s10570-012-9730-4

    Article  Google Scholar 

  14. Panamgama LA, Peramune PR (2018) Coconut coir pith lignin: A physicochemical and thermal characterization. Int J Biol Macromol. https://doi.org/10.1016/j.ijbiomac.2018.03.012

    Article  Google Scholar 

  15. Júnior MA, Borsoi C, Hansen B, Catto AL (2019) Evaluation of different methods for extraction of nanocellulose from yerba mate residues. Carbohydr Polym. https://doi.org/10.1016/j.carbpol.2019.04.064

    Article  Google Scholar 

  16. Hemmati F, Jafari SM, Taheri RA (2019) Optimization of homogenization-sonication technique for the production of cellulose nanocrystals from cotton linter. Int J Biol Macromol. https://doi.org/10.1016/j.ijbiomac.2019.06.241

    Article  PubMed  Google Scholar 

  17. Altaner CM, Horikawa Y, Sugiyama J, Jarvis MC (2014) Cellulose Iβ investigated by IR-spectroscopy at low temperatures. Cellulose. https://doi.org/10.1007/s10570-014-0360-x

    Article  Google Scholar 

  18. Maekawa E, Ichizawa T, Koshijima T (1989) An evaluation of the acid-soluble lignin determination in analyses of lignin by the sulfuric acid method. J Wood Chem Technol. https://doi.org/10.1080/02773818908050315

    Article  Google Scholar 

  19. Jiang E, Maghe M, Zohdi N, Amiralian N, Naebe M, Laycock B, Fox BL, Martin DJ, Annamalai PK (2019) Influence of different nanocellulose additives on processing and performance of PAN-based carbon fibers. ACS Omega. https://doi.org/10.1021/acsomega.9b00266

    Article  PubMed  PubMed Central  Google Scholar 

  20. Liu HC, Tuan CC, Davijani AA, Wang PH, Chang H, Wong CP, Kumar S (2017) Rheological behavior of polyacrylonitrile and polyacrylonitrile/lignin blends. Polymer. https://doi.org/10.1016/j.polymer.2017.01.043

    Article  PubMed  PubMed Central  Google Scholar 

  21. Liang W, Chenyang Y, Bin Z, Xiaona W, Zijun Y, Lixiang Z, Hongwei Z, Nanwen L (2019) Hydrophobic polyacrylonitrile membrane preparation and its use in membrane contactor for CO2 absorption. J Memb Sci. https://doi.org/10.1016/j.memsci.2018.09.066

    Article  Google Scholar 

  22. Redondo A, Mortensen N, Djeghdi K, Jang D, Ortuso RD, Weder C, Korley LT, Steiner U, Gunkel I (2022) Comparing percolation and alignment of cellulose nanocrystals for the reinforcement of polyurethane nanocomposites. ACS Appl Mater Interfaces. https://doi.org/10.1021/acsami.1c21656

    Article  PubMed  Google Scholar 

  23. Liu HC, Chien AT, Newcomb BA, Liu Y, Kumar S (2015) Processing, structure, and properties of lignin-and CNT-incorporated polyacrylonitrile-based carbon fibers. ACS Sustain Chem Eng. https://doi.org/10.1021/acssuschemeng.5b00562

    Article  Google Scholar 

  24. Rashid ES, Gul A, Yehya WA, Julkapli NM (2021) Physico-chemical characteristics of nanocellulose at the variation of catalytic hydrolysis process. Heliyon. https://doi.org/10.1016/j.heliyon.2021.e07267

    Article  PubMed  PubMed Central  Google Scholar 

  25. Luo J, Chang H, Bakhtiary Davijani AA, Liu HC, Wang PH, Moon RJ, Kumar S (2017) Influence of high loading of cellulose nanocrystals in polyacrylonitrile composite films. Cellulose. https://doi.org/10.1007/s10570-017-1219-8

    Article  Google Scholar 

  26. Guo Y, Cheng C, Huo T, Ren Y, Liu X (2020) Highly effective flame retardant lignin/polyacrylonitrile composite prepared via solution blending and phosphorylation. Polym Degrad Stab. https://doi.org/10.1016/j.polymdegradstab.2020.109362

    Article  Google Scholar 

  27. Wang Z, Yao Z, Zhou J, Zhang Y (2017) Reuse of waste cotton cloth for the extraction of cellulose nanocrystals. Carbohydr Polym. https://doi.org/10.1016/j.carbpol.2016.10.044

    Article  PubMed  Google Scholar 

  28. Joseph J, Jemmis ED (2007) Red-, blue-, or no-shift in hydrogen bonds: a unified explanation. J Am Chem Soc. https://doi.org/10.1021/ja067545z

    Article  PubMed  PubMed Central  Google Scholar 

  29. Altaner CM, Thomas LH, Fernandes AN, Jarvis MC (2014) How cellulose stretches: synergism between covalent and hydrogen bonding. Biomacromol. https://doi.org/10.1021/bm401616n

    Article  Google Scholar 

  30. Mishra SB, Mishra AK, Kaushik NK, Khan MA (2007) Study of performance properties of lignin-based polyblends with polyvinyl chloride. J Mater Process Technol. https://doi.org/10.1016/j.jmatprotec.2006.10.016

    Article  Google Scholar 

  31. Mustafov SD, Mohanty AK, Misra M, Seydibeyoğlu MÖ (2019) Fabrication of conductive Lignin/PAN carbon nanofibers with enhanced graphene for the modified electrodes. Carbon. https://doi.org/10.1016/j.carbon.2019.02.058

    Article  Google Scholar 

Download references

Funding

This work was financially supported by the Department of science of Technology (DST), New Delhi, India, under the Woman Scientist Scheme – A (WoS-A).File No- SR/WOS-A/ET-90/2017.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vishnu Prabha Muthusamy.

Ethics declarations

Conflict of interest

Not Applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Muthusamy, V.P., Krishnakumar, V. Tensile performance of NCC and lignin reinforcements in PAN matrix. J Polym Res 29, 462 (2022). https://doi.org/10.1007/s10965-022-03300-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10965-022-03300-2

Keywords

Navigation