Skip to main content
Log in

Improvement of mechanical, morphological and thermal properties on PP-enriched graphene oxide/PP-g-MA/EPDM blend compatibilized: PP-g-MA compatibilizer and graphene oxide nanofiller role

  • Original Paper
  • Published:
Journal of Polymer Research Aims and scope Submit manuscript

Abstract

One of the modern methods of mixing polymers that causes the properties of nanocomposites to be significantly improved is the incorporation of nanofillers into the matrix. In this study, polypropylene (PP) was reinforced using graphene oxide and then PP-g-MA compatibilizer was used for better dispersion of graphene oxide and compatibility between polypropylene and ethylene-propylene rubber (EPDM). The purpose of this study is to achieve the optimum blend composition. In this regard, the mechanical, rheological and morphological properties of samples using DMTA, TGA and DSC were examined and their theory was analyzed. The results showed that the mechanical properties such as tensile strength, elongation at break and young's modulus are significantly improved by increasing the concentration of graphene oxide in the presence of PP-g-MA compatibilizer. SEM images also illustrated that with the increasing concentration of nanofillers in the blend matrix, the particle size of the dispersed phase of EPDM decreases. In addition, TEM images also showed the presence of PP-g-MA compatibilizer causing better dispersion of graphene oxide in GO-PP/ PP-g-MA/EPDM nanocomposites.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Pasquini N, Addeo A (2006) Polypropylene handbook. Choice Reviews Online 43:43–2825–43–2825. https://doi.org/10.5860/choice.43-2825

  2. Hisham AM (2016) Polypropylene as a Promising Plastic: A Review. American Journal of Polymer Science 6:1–11

    Google Scholar 

  3. Paul DR (2012) POLYMER BLENDS, Volume 1. vol. 1. Elsevier

  4. Xu C, Zheng Z, Wu W, Wang Z, Fu L (2019) Dynamically vulcanized PP/EPDM blends with balanced stiffness and toughness via in-situ compatibilization of MAA and excess ZnO nanoparticles: Preparation, structure and properties. Compos B Eng 160:147–157. https://doi.org/10.1016/j.compositesb.2018.10.014

    Article  CAS  Google Scholar 

  5. Wu K, Wang X, Xu Y, Guo W (2020) Flame retardant efficiency of modified para-aramid fiber synergizing with ammonium polyphosphate on PP/EPDM. Polym Degrad Stab 172:109065. https://doi.org/10.1016/j.polymdegradstab.2019.109065

    Article  CAS  Google Scholar 

  6. Niyaraki EN, Isvandzibaei MR, Niyaraki MN (n.d.) Experimental study of the impact and thermal properties of polypropylene/EPDM base nanocomposites reinforced with graphene nanosheets and nanoclay

  7. Doufnoune R, Haddaoui N (2017) Effects of surface functionalized partially reduced graphene oxide and different compatibilizers on the properties and structure of PP/EPR nanocomposites. J Polym Res 24:138. https://doi.org/10.1007/s10965-017-1302-8

    Article  CAS  Google Scholar 

  8. Chabot V, Higgins D, Yu A, Xiao X, Chen Z, Zhang J (2014) A review of graphene and graphene oxide sponge: Material synthesis and applications to energy and the environment. Energy Environ Sci 7:1564–1596. https://doi.org/10.1039/c3ee43385d

    Article  CAS  Google Scholar 

  9. Razeghi M, Pircheraghi G (2018) TPU/graphene nanocomposites: Effect of graphene functionality on the morphology of separated hard domains in thermoplastic polyurethane. Polymer 148:169–180. https://doi.org/10.1016/j.polymer.2018.06.026

    Article  CAS  Google Scholar 

  10. Haghnegahdar M, Naderi G, Ghoreishy MHR (2017) Fracture toughness and deformation mechanism of un-vulcanized and dynamically vulcanized polypropylene/ethylene propylene diene monomer/graphene nanocomposites. Compos Sci Technol 141:83–98. https://doi.org/10.1016/j.compscitech.2017.01.015

    Article  CAS  Google Scholar 

  11. Díez-Pascual AM (2021) Effect of graphene oxide on the properties of poly(3-Hydroxybutyrate-co-3-Hydroxyhexanoate). Polymers 13:129. https://doi.org/10.3390/polym13142233

    Article  CAS  Google Scholar 

  12. Azizli MJ, Barghamadi M, Rezaeeparto K, Mokhtary M, Parham S, Goodarzi V et al (2021) Enhancement of thermal, morphological, and mechanical properties of compatibilized based on PA6-enriched graphene oxide/EPDM-g-MA/CR: Graphene oxide and EPDM-g-MA compatibilizer role. J Appl Polym Sci 138:49901. https://doi.org/10.1002/app.49901

    Article  CAS  Google Scholar 

  13. Pan Q, Shim E, Pourdeyhimi B, Gao W (2017) Highly Conductive Polypropylene-Graphene Nonwoven Composite via Interface Engineering. Langmuir 33:7452–7458. https://doi.org/10.1021/acs.langmuir.7b01508

    Article  CAS  PubMed  Google Scholar 

  14. Yao J, Liu S, Huang Y, Ren S, Lv Y, Kong M et al (2020) Acyl-chloride functionalized graphene oxide chemically grafted with hindered phenol and its application in anti-degradation of polypropylene. Progress in Natural Science: Materials International 30:328–336. https://doi.org/10.1016/j.pnsc.2020.05.010

    Article  CAS  Google Scholar 

  15. Tripathi S, Bhattacharya A, Singh R, Tabor RF (2017) Rheological behavior of high internal phase water-in-oil emulsions: Effects of droplet size, phase mass fractions, salt concentration and aging. Chem Eng Sci 174:290–301. https://doi.org/10.1016/j.ces.2017.09.016

    Article  CAS  Google Scholar 

  16. Esmizadeh E, Sadeghi T, Vahidifar A, Naderi G, Ghoreishy MHR, Paran SMR (2019) Nano Graphene-Reinforced Bio-nanocomposites Based on NR/PLA: The Morphological, Thermal and Rheological Perspective. J Polym Environ 27:1529–1541. https://doi.org/10.1007/s10924-019-01450-x

    Article  CAS  Google Scholar 

  17. Bazli L, Barghamadi M, Shafiee S, Karrabi M, Ghoreishy MHR (2021) Investigation of rheological, mechanical, and thermal properties of nanocomposites based on nitrile rubber-phenolic resin reinforced with nanographene. J Appl Polym Sci 138:50906. https://doi.org/10.1002/app.50906

    Article  CAS  Google Scholar 

  18. Scaffaro R, Maio A, Gulino EF, Morreale M, La MFP (2020) The effects of nanoclay on the mechanical properties, carvacrol release and degradation of a pla/pbat blend. Materials 13:983. https://doi.org/10.3390/ma13040983

    Article  CAS  PubMed Central  Google Scholar 

  19. McKeen LW (2017) Film properties of plastics and elastomers. William Andrew

  20. Azizl MJ, Barghamadi M, Rezaeeparto K, Mokhtary M, Parham S (2021) Graphene oxide and graphene hybrid nanocomposites based on compatibilized PP/PTW/EVA: effect of nanofiller and compatibilizer on the modeling of viscoplastic behavior. J Polym Res 28:1–21. https://doi.org/10.1007/s10965-021-02647-2

    Article  CAS  Google Scholar 

  21. Patra PK, Jaisingh A, Goel V, Kapur GS, Nebhani L (2021) Crystallization kinetics of compatibilized blends of polypropylene and polyethylenimine. J Thermal Anal and Cal 1–11. https://doi.org/10.1007/s10973-021-10970-5

  22. Li X, Bandyopadhyay P, Nguyen TT, Park O kyung, Lee JH (2018) Fabrication of functionalized graphene oxide/maleic anhydride grafted polypropylene composite film with excellent gas barrier and anticorrosion properties. J Memb Sci 547:80–92. https://doi.org/10.1016/j.memsci.2017.10.031

  23. Hasanzadeh Kermani H, Mottaghitalab V, Mokhtary M, Alizadeh DA (2020) Morphological, rheological, and mechanical properties of ethylene propylene diene monomer/carboxylated styrene-butadiene rubber/multiwall carbon nanotube nanocomposites. Int J Polym Anal Charact 25:479–498. https://doi.org/10.1080/1023666X.2020.1807681

    Article  CAS  Google Scholar 

  24. Xue C, Gao H, Hu Y, Hu G (2019) Hyperelastic characteristics of graphene natural rubber composites and reinforcement and toughening mechanisms at multi-scale. Compos Struct 228:111365. https://doi.org/10.1016/j.compstruct.2019.111365

    Article  Google Scholar 

  25. Barghamadi M, Karrabi M, Ghoreishy MHR, Mohammadian-Gezaz S (2019) Effects of two types of nanoparticles on the cure, rheological, and mechanical properties of rubber nanocomposites based on the NBR/PVC blends. J Appl Polym Sci 136. https://doi.org/10.1002/app.47550

  26. Azizli MJ, Barghamadi M, Rezaeeparto K, Mokhtary M, Parham S (2020) Compatibility, mechanical and rheological properties of hybrid rubber NR/EPDM-g-MA/EPDM/graphene oxide nanocomposites: Theoretical and experimental analyses. Composites Communications 22:100442. https://doi.org/10.1016/j.coco.2020.100442

    Article  Google Scholar 

  27. Yang H, Cai F, Luo Y, Ye X, Zhang C, Wu S (2020) The interphase and thermal conductivity of graphene oxide/butadiene-styrene-vinyl pyridine rubber composites: A combined molecular simulation and experimental study. Compos Sci Technol 188:107971. https://doi.org/10.1016/j.compscitech.2019.107971

    Article  CAS  Google Scholar 

  28. Zare Y (2015) Assumption of interphase properties in classical Christensen–Lo model for Young’s modulus of polymer nanocomposites reinforced with spherical nanoparticles. RSC Adv 5:95532–95538

    Article  CAS  Google Scholar 

  29. Raos G (2003) Application of the Christensen-Lo Model to the Reinforcement of Elastomers by Fractal Fillers. Macromol Theory Simul 12:17–23

    Article  CAS  Google Scholar 

  30. Zare Y (2016) A model for tensile strength of polymer/clay nanocomposites assuming complete and incomplete interfacial adhesion between the polymer matrix and nanoparticles by the average normal stress in clay platelets. RSC Adv 6:57969–57976

    Article  CAS  Google Scholar 

  31. Budiansky B (1965) On the elastic moduli of some heterogeneous materials. J Mech Phys Solids 13:223–227

    Article  Google Scholar 

  32. Chu YC, Rokhlin SI (1995) Determination of fiber-matrix interphase moduli from experimental moduli of composites with multi-layered fibers. Mech Mater 21:191–215

    Article  Google Scholar 

  33. Shen L, Li J (2005) Homogenization of a fibre/sphere with an inhomogeneous interphase for the effective elastic moduli of composites. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences 461:1475–1504

    Article  CAS  Google Scholar 

  34. Zare Y (2015) Effects of interphase on tensile strength of polymer/CNT nanocomposites by Kelly-Tyson theory. Mech Mater 85:1–6

    Article  Google Scholar 

  35. Jiang B, Weng GJ (2004) A generalized self-consistent polycrystal model for the yield strength of nanocrystalline materials. J Mech Phys Solids 52:1125–1149

    Article  CAS  Google Scholar 

  36. Barghamadi M, Ghoreishy MHR, Karrabi M, Mohammadian-Gezaz S (2021) Modeling of nonlinear hyper-viscoelastic and stress softening behaviors of acrylonitrile butadiene rubber/polyvinyl chloride nanocomposites reinforced by nanoclay and graphene. Polym Compos 42:583–596. https://doi.org/10.1002/pc.25849

    Article  CAS  Google Scholar 

  37. Biranje PM, Prakash J, Srivastava AP, Biswas S, Patwardhan AW, Joshi JB et al (2021) In situ tuning of graphene oxide morphology by electrochemical exfoliation. J Mater Sci 56:19383–19402. https://doi.org/10.1007/s10853-021-06535-4

    Article  CAS  Google Scholar 

  38. Barghamadi M, Ghoreishy MHR, Karrabi M, Mohammadian-Gezaz S (2020) Investigation on the kinetics of cure reaction of acrylonitrile–butadiene rubber (NBR)/polyvinyl chloride (PVC)/graphene nanocomposite using various models. J Appl Polym Sci 137. https://doi.org/10.1002/app.48632

  39. Xia Z, Maccaferri G, Zanardi C, Christian M, Ortolani L, Morandi V et al (2019) Dispersion Stability and Surface Morphology Study of Electrochemically Exfoliated Bilayer Graphene Oxide. J Phys Chem C 123:15122–15130. https://doi.org/10.1021/acs.jpcc.9b03395

    Article  CAS  Google Scholar 

  40. Sharma RP, Green PF (2017) Component Dynamics in Polymer/Polymer Blends: Role of Spatial Compositional Heterogeneity. Macromolecules 50:6617–6630. https://doi.org/10.1021/acs.macromol.7b00092

    Article  CAS  Google Scholar 

  41. Sangroniz L, Santamaría A, Müller AJ (2019) Rheology of polymer blend nanocomposites. Rheol Polym Blends and Nanocompos: Theory, Modelling and App Elsevier 123–60. https://doi.org/10.1016/B978-0-12-816957-5.00007-0

  42. Manzoor MF, Ahmad N, Aadil RM, Rahaman A, Ahmed Z, Rehman A et al (2019) Impact of pulsed electric field on rheological, structural, and physicochemical properties of almond milk. J Food Process Eng 42:e13299. https://doi.org/10.1111/jfpe.13299

    Article  Google Scholar 

  43. Wang Z-N, Shen S-L, Zhou A, Lyu H-M (2021) Investigation of Time-Dependent Characteristics of EPDM Rubber Gasket Used for Shield Tunnels. J Mater Civ Eng 33:04021251. https://doi.org/10.1061/(asce)mt.1943-5533.0003844

    Article  Google Scholar 

  44. Sakib N, Koh YP, Huang Y, Mongcopa KIS, Le AN, Benicewicz BC et al (2020) Thermal and Rheological Analysis of Polystyrene-Grafted Silica Nanocomposites. ACS Appl Mater Interfaces 53:2123–2135. https://doi.org/10.1021/acs.macromol.9b02127

    Article  CAS  Google Scholar 

  45. Azarhoosh A, Koohmishi M (2020) Investigation of the rutting potential of asphalt binder and mixture modified by styrene-ethylene/propylene-styrene nanocomposite. Constr Build Mater 255:119363. https://doi.org/10.1016/j.conbuildmat.2020.119363

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohammad Javad Azizli.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 99 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Azizli, M.J., Barghamadi, M., Rezaeeparto, K. et al. Improvement of mechanical, morphological and thermal properties on PP-enriched graphene oxide/PP-g-MA/EPDM blend compatibilized: PP-g-MA compatibilizer and graphene oxide nanofiller role. J Polym Res 29, 322 (2022). https://doi.org/10.1007/s10965-022-03182-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10965-022-03182-4

Keywords

Navigation