Skip to main content

Advertisement

Log in

Phosphorylated graphene oxide-reinforced polybenzimidazole composite membrane for high-temperature proton exchange membrane fuel cell

  • Original Paper
  • Published:
Journal of Polymer Research Aims and scope Submit manuscript

Abstract

A novel phosphorylated graphene oxide (PGO)-reinforced polybenzimidazole (PBI) composite membrane was prepared for high-temperature proton exchange membrane fuel cell (HT-PEMFC). PGO was prepared by phosphorylation of graphene oxide (GO) with phosphoric acid (PA), and its structure was characterized by Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), Raman spectroscopy, X-ray photoelectron spectroscopy (XPS), energy dispersive spectrometry (EDS), and ion exchange capacity (IEC) measurement. Then, PGO was added into PBI to prepare composite membranes, with excellent oxidation and thermal stability, outstanding mechanical properties, strong PA uptake and high proton conductivity. The PBI composite membrane with 1.5 wt.% of PGO exhibits the highest tensile strength (38.4 MPa) and excellent proton conductivity (17.6 mS·cm−1 at 180 ℃ without moisture) after immersion in PA aqueous solution, which is 1.31 and 1.15 times higher than that of pure PBI and PBI/GO composite membranes, respectively. Thus, PGO-reinforced PBI composite membranes have promising applications in HT-PEMFC.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Scheme 2
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

References

  1. Jiang ZQ, Jiang ZJ (2014) Plasma techniques for the fabrication of polymer electrolyte membranes for fuel cells. J Membrane Sci 456:85–106. https://doi.org/10.1016/j.memsci.2014.01.004

    Article  CAS  Google Scholar 

  2. Hasani-Sadrabadi MM, Dashtimoghadam E, Mokarram N, Majedi FS, Jacob KI (2012) Triple-layer proton exchange membranes based on chitosan biopolymer with reduced methanol crossover for high-performance direct methanol fuel cells application. Polymer 53(13):2643–2651. https://doi.org/10.1016/j.polymer.2012.03.052

    Article  CAS  Google Scholar 

  3. Vinayan BP, Nagar R, Rajalakshmi N, Ramaprabhu S (2012) Adv Funct Mater 22(16):3519–3526. https://doi.org/10.1002/adfm.201102544

    Article  CAS  Google Scholar 

  4. Li Q, Jensen JO, Savinell RF, Bjerrum NJ (2009) Prog Polym Sci 34(5):449–477. https://doi.org/10.1016/j.progpolymsci.2008.12.003

    Article  CAS  Google Scholar 

  5. Neburchilov V, Martin J, Wang H, Zhang J (2007) J Power Sources 169(2):221–238. https://doi.org/10.1016/j.jpowsour.2007.03.044

    Article  CAS  Google Scholar 

  6. Qiu X, Dong T, Ueda M, Zhang X, Wang L (2017) J Membrane Sci 524:663–672. https://doi.org/10.1016/j.memsci.2016.11.064

    Article  CAS  Google Scholar 

  7. Rozière J, Jones DJ (2003) Annu Rev Mater Res 33(1):503–555. https://doi.org/10.1146/annurev.matsci.33.022702.154657

    Article  CAS  Google Scholar 

  8. Alberti G, Narducci R, Sganappa M (2008) J Power Sources 178(2):575–583. https://doi.org/10.1016/j.jpowsour.2007.09.034

    Article  CAS  Google Scholar 

  9. Li J, Li X, Yu S, Hao J, Lu W, Shao Z, Yi B (2014) Energ Convers Manage 85:323–327. https://doi.org/10.1016/j.enconman.2014.05.052

    Article  CAS  Google Scholar 

  10. Hickner MA, Ghassemi H, Kim YS, Einsla BR, McGrath JE (2004) Chem Rev 104(10):4587–4612. https://doi.org/10.1021/cr020711a

    Article  CAS  PubMed  Google Scholar 

  11. Kreuer KD, Rabenau A, Weppner W (1982) Angew Chem 94(3):224–225. https://doi.org/10.1002/ange.19820940335

    Article  CAS  Google Scholar 

  12. Agmon N (1995) Chem Phys Lett 244(5):456–462. https://doi.org/10.1016/0009-2614(95)00905-J

    Article  CAS  Google Scholar 

  13. Wang S, Zhao C, Ma W, Zhang G, Liu Z, Ni J, Li M, Zhang N, Na H (2012) J Membrane Sci 411–412:54–63. https://doi.org/10.1016/j.memsci.2012.04.011

    Article  CAS  Google Scholar 

  14. Chuang S-W, Hsu SL-C, Liu Y-H (2007) Synthesis and properties of fluorine-containing polybenzimidazole/silica nanocomposite membranes for proton exchange membrane fuel cells. J Membrane Sci 305(1): 353–363. https://doi.org/10.1016/j.memsci.2007.08.033

  15. Joseph D, Krishnan NN, Henkensmeier D, Jang JH, Choi SH, Kim H-J, Han J, Nam SW (2017) Thermal crosslinking of PBI/sulfonated polysulfone based blend membranes. J Mater Chem A 5(1):409–417. https://doi.org/10.1039/C6TA07653J

    Article  CAS  Google Scholar 

  16. Cai Y, Zhouying Y, Xin T, Shiai X (2018) Phosphoric acid doped crosslinked polybenzimidazole/modified graphene oxide composite membranes for high temperature proton exchange membrane applications. J Electrochem Soc 165(11):914–920. https://doi.org/10.1149/2.0051811jes

    Article  CAS  Google Scholar 

  17. Tao P, Dai Y, Chen S, Wang J, He R (2020) Hyperbranched polyamidoamine modified high temperature proton exchange membranes based on PTFE reinforced blended polymers. J Membrane Sci 604:118004. https://doi.org/10.1016/j.memsci.2020.118004

  18. Wang P, Liu Z, Li X, Peng J, Hu W, Liu B (2019) Toward enhanced conductivity of high-temperature proton exchange membranes: development of novel PIM-1 reinforced PBI alloy membranes. Chem Commun 55(46):6491–6494. https://doi.org/10.1039/C9CC02102G

    Article  CAS  Google Scholar 

  19. He Y, Tong C, Geng L, Liu L, Lü C (2014) Enhanced performance of the sulfonated polyimide proton exchange membranes by graphene oxide: Size effect of graphene oxide. J Membrane Sci 458:36–46. https://doi.org/10.1016/j.memsci.2014.01.017

  20. Cele N, Ray SS (2009) Recent progress on Nafion-based nanocomposite membranes for fuel cell applications. Macromol Mater Eng 294(11):719–738. https://doi.org/10.1002/mame.200900143

    Article  CAS  Google Scholar 

  21. Jiang Z, Zhao X, Fu Y, Manthiram A (2012) Composite membranes based on sulfonated poly(ether ether ketone) and SDBS-adsorbed graphene oxide for direct methanol fuel cells. J Mater Chem 22(47):24862–24869. https://doi.org/10.1039/C2JM35571J

    Article  CAS  Google Scholar 

  22. Lee DC, Yang HN, Park SH, Kim WJ (2014) Nafion/graphene oxide composite membranes for low humidifying polymer electrolyte membrane fuel cell. J Membrane Sci 452:20–28. https://doi.org/10.1016/j.memsci.2013.10.018

    Article  CAS  Google Scholar 

  23. Ye Y-S, Cheng M-Y, Xie X-L, Rick J, Huang Y-J, Chang F-C, Hwang B-J (2013) Alkali doped polyvinyl alcohol/graphene electrolyte for direct methanol alkaline fuel cells. J Power Sources 239:424–432. https://doi.org/10.1016/j.jpowsour.2013.03.021

    Article  CAS  Google Scholar 

  24. Ibrahim A, Hossain O, Chaggar J, Steinberger-Wilckens R, El-Kharouf A (2020) GO-nafion composite membrane development for enabling intermediate temperature operation of polymer electrolyte fuel cell. Int J Hydrogen Energ 45(8):5526–5534. https://doi.org/10.1016/j.ijhydene.2019.05.210

    Article  CAS  Google Scholar 

  25. Cai Y, Yue Z, Xu S (2017) A novel polybenzimidazole composite modified by sulfonated graphene oxide for high temperature proton exchange membrane fuel cells in anhydrous atmosphere. J Appl Polym Sci 134(25):44986. https://doi.org/10.1002/app.44986

    Article  CAS  Google Scholar 

  26. Ahmed S, Cai Y, Ali M, Khannal S, Ahmad Z, Lu Y, Wang S, Xu S (2019) One-step phosphorylation of graphene oxide for the fabrication of nanocomposite membranes with enhanced proton conductivity for fuel cell applications. J Mater Sci-Mater El 30(14):13056–13066. https://doi.org/10.1007/s10854-019-01667-5

    Article  CAS  Google Scholar 

  27. Wu H, Shi H, Wang Y, Jia X, Tang C, Zhang J, Yang S (2014) Hyaluronic acid conjugated graphene oxide for targeted drug delivery. Carbon 69:379–389. https://doi.org/10.1016/j.carbon.2013.12.039

    Article  CAS  Google Scholar 

  28. Liu T, Su H, Qu X, Ju P, Cui L, Ai S (2011) Acetylcholinesterase biosensor based on 3-carboxyphenylboronic acid/reduced graphene oxide–gold nanocomposites modified electrode for amperometric detection of organophosphorus and carbamate pesticides. Sensor Actuat B-Chem 160(1):1255–1261. https://doi.org/10.1016/j.snb.2011.09.059

    Article  CAS  Google Scholar 

  29. Xu C, Liu X, Cheng J, Scott K (2015) A polybenzimidazole/ionic-liquid-graphite-oxide composite membrane for high temperature polymer electrolyte membrane fuel cells. J Power Sources 274:922–927. https://doi.org/10.1016/j.jpowsour.2014.10.134

    Article  CAS  Google Scholar 

  30. Smitha B, Sridhar S, Khan AA (2004) Polyelectrolyte complexes of chitosan and poly(acrylic acid) as proton exchange membranes for fuel cells. Macromolecules 37(6):2233–2239. https://doi.org/10.1021/ma0355913

    Article  CAS  Google Scholar 

  31. Mack F, Aniol K, Ellwein C, Kerres J, Zeis R (2015) Novel phosphoric acid-doped PBI-blends as membranes for high-temperature PEM fuel cells. J Mater Chem A 3(20):10864–10874. https://doi.org/10.1039/C5TA01337B

    Article  CAS  Google Scholar 

  32. Marcano DC, Kosynkin DV, Berlin JM, Sinitskii A, Sun Z, Slesarev A, Alemany LB, Lu W, Tour JM (2010) Improved synthesis of graphene oxide. ACS Nano 4(8):4806–4814. https://doi.org/10.1021/nn1006368

    Article  CAS  PubMed  Google Scholar 

  33. Achary LSK, Kumar A, Rout L, Kunapuli SVS, Dhaka RS, Dash P (2018) Phosphate functionalized graphene oxide with enhanced catalytic activity for Biginelli type reaction under microwave condition. Chem Eng J 331:300–310. https://doi.org/10.1016/j.cej.2017.08.109

    Article  CAS  Google Scholar 

  34. Xu C, Wu X, Zhu J, Wang X (2008) Synthesis of amphiphilic graphite oxide. Carbon 46(2):386–389. https://doi.org/10.1016/j.carbon.2007.11.045

    Article  CAS  Google Scholar 

  35. Venkatasubramanian N, Dean DR, Dang TD, Price GE, Arnold FE (2000) Solvent cast thermoplastic and thermoset rigid-rod molecular composites. Polymer 41(9):3213–3226. https://doi.org/10.1016/S0032-3861(99)00510-8

    Article  CAS  Google Scholar 

  36. Chien H-C, Tsai L-D, Huang C-P, Kang C-y, Lin J-N, Chang F-C (2013) Sulfonated graphene oxide/Nafion composite membranes for high-performance direct methanol fuel cells. International Journal of Hydrogen Energy 38(31):13792–13801. https://doi.org/10.1016/j.ijhydene.2013.08.036

  37. Xue C, Zou J, Sun Z, Wang F, Han K, Zhu H (2014) Graphite oxide/functionalized graphene oxide and polybenzimidazole composite membranes for high temperature proton exchange membrane fuel cells. Int J Hydrogen Energ 39(15):7931–7939. https://doi.org/10.1016/j.ijhydene.2014.03.061

    Article  CAS  Google Scholar 

  38. Rafiee MA, Rafiee J, Wang Z, Song H, Yu Z-Z, Koratkar N (2009) Enhanced mechanical properties of nanocomposites at low graphene content. ACS Nano 3(12):3884–3890. https://doi.org/10.1021/nn9010472

    Article  CAS  PubMed  Google Scholar 

  39. Geng L, He Y, Liu D, Dai X, Lü C (2012) Facile in situ template synthesis of sulfonated polyimide/mesoporous silica hybrid proton exchange membrane for direct methanol fuel cells. Micropor Mesopor Mat 148(1):8–14. https://doi.org/10.1016/j.micromeso.2011.07.010

    Article  CAS  Google Scholar 

  40. Kowsari E, Zare A, Ansari V (2015) Phosphoric acid-doped ionic liquid-functionalized graphene oxide/sulfonated polyimide composites as proton exchange membrane. Int J Hydrogen Energ 40(40):13964–13978. https://doi.org/10.1016/j.ijhydene.2015.08.064

    Article  CAS  Google Scholar 

  41. Sun P, Wang Y, Li Z, Wang C, Pei H, Yin X (2020) Organic-inorganic backbone with high contents of proton conducting groups: A newly designed high performance proton conductor. Int J Hydrogen Energ 45(28):14407–14412. https://doi.org/10.1016/j.ijhydene.2020.03.148

    Article  CAS  Google Scholar 

  42. Zhou Y, Yang J, Su H, Zeng J, Jiang SP, Goddard WA (2014) Insight into proton transfer in phosphotungstic acid functionalized mesoporous silica-based proton exchange membrane fuel cells. J Am Chem Soc 136(13):4954–4964. https://doi.org/10.1021/ja411268q

    Article  CAS  PubMed  Google Scholar 

  43. Iizuka Y, Tanaka M, Kawakami H (2013) Preparation and proton conductivity of phosphoric acid-doped blend membranes composed of sulfonated block copolyimides and polybenzimidazole. Polym Int 62(5):703–708. https://doi.org/10.1002/pi.4486

    Article  CAS  Google Scholar 

  44. Suzuki K, Iizuka Y, Tanaka M, Kawakami H (2012) Phosphoric acid-doped sulfonated polyimide and polybenzimidazole blend membranes: high proton transport at wide temperatures under low humidity conditions due to new proton transport pathways. J Mater Chem 22(45):23767–23772. https://doi.org/10.1039/C2JM34529C

    Article  CAS  Google Scholar 

  45. Lechner RE (1995) Neutron investigations of superprotonic conductors. Ferroelectrics 167(1):83–98. https://doi.org/10.1080/00150199508007723

    Article  CAS  Google Scholar 

  46. Xiao L, Zhang H, Jana T, Scanlon E, Chen R, Choe EW, Ramanathan LS, Yu S, Benicewicz BC (2005) Synthesis and characterization of pyridine-based polybenzimidazoles for high temperature polymer electrolyte membrane fuel cell applications. Fuel Cells 5(2):287–295. https://doi.org/10.1002/fuce.200400067

    Article  CAS  Google Scholar 

  47. Plackett D, Siu A, Li Q, Pan C, Jensen JO, Nielsen SF, Permyakova AA, Bjerrum NJ (2011) High-temperature proton exchange membranes based on polybenzimidazole and clay composites for fuel cells. J Membrane Sci 383(1):78–87. https://doi.org/10.1016/j.memsci.2011.08.038

    Article  CAS  Google Scholar 

  48. Yang J, Xu Y, Liu P, Gao L, Che Q, He R (2015) Epoxides cross-linked hexafluoropropylidene polybenzimidazole membranes for application as high temperature proton exchange membranes. Electrochim Acta 160:281–287. https://doi.org/10.1016/j.electacta.2015.01.094

    Article  CAS  Google Scholar 

  49. Wang S, Zhang G, Han M, Li H, Zhang Y, Ni J, Ma W, Li M, Wang J, Liu Z, Zhang L, Na H (2011) Novel epoxy-based cross-linked polybenzimidazole for high temperature proton exchange membrane fuel cells. Int J Hydrogen Energ 36(14):8412–8421. https://doi.org/10.1016/j.ijhydene.2011.03.147

    Article  CAS  Google Scholar 

  50. Yang J, Li Q, Cleemann LN, Xu C, Jensen JO, Pan C, Bjerrum NJ, He R (2012) Synthesis and properties of poly(aryl sulfone benzimidazole) and its copolymers for high temperature membrane electrolytes for fuel cells. J Mater Chem 22(22):11185–11195. https://doi.org/10.1039/C2JM30217A

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This research is financially supported by the National Natural Science Foundation of China (21764011), the Foundation from Qinghai Science and Technology Department (2020-HZ-808), Thousand Talents Program of Qinghai Province and Shanghai Aerospace Science and Technology Innovation Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shiai Xu.

Ethics declarations

Conflict of interest

There are no conflicts of interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Highlights

• PGO was synthesized by a facile one-step approach.

• PGO leads to formation of new proton channels and improvement of proton conductivity.

• PBI/PGO-1.5%-PA composite exhibits the highest tensile strength (38.4 MPa) and excellent proton conductivity (17.6 mS·cm−1) at 180 ℃ without moisture.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 129 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhao, X., Nan, B., Lu, Y. et al. Phosphorylated graphene oxide-reinforced polybenzimidazole composite membrane for high-temperature proton exchange membrane fuel cell. J Polym Res 28, 480 (2021). https://doi.org/10.1007/s10965-021-02846-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10965-021-02846-x

Keywords

Navigation