Skip to main content
Log in

Deposition and post-treatment of promising poly(3,4-ethylenedioxythiophene)-polystyrene sulfonate composite films for electronic applications

  • Original Paper
  • Published:
Journal of Polymer Research Aims and scope Submit manuscript

Abstract

In this work, innovative composite films were deposited using as a matrix poly(3,4-ethylenedioxythiophene)-polystyrene sulfonate (PEDOT:PSS) and particles of difluoroboron β-diketonate complexes, with different substituents in their periphery as a reinforcement. The composite films were treated with isopropanol (IPA) steam, with the purpose of decreasing the optical bandgap and increasing charge transport in the films. The composite films were characterized by means of scanning electron microscopy (SEM), atomic force microscopy (AFM), and Raman spectroscopy. The bandgap was evaluated for each film before and after post-treatments, and finally, the electrical behavior was evaluated under different light irradiation conditions. To evaluate the electrical properties of the films, simple devices were manufactured. The particles of difluoroboron β-diketonate complexes with high-polarity substituents and high electron-acceptor capabilities favor the formation of composite films with low energy transitions of free carriers to higher levels within the same band, as well as those of higher energies, corresponding to the optical bandgap. Additionally, the distribution of this type of particles in the PEDOT:PSS allows, after post-treatments, the tautomerization of the structure in the polymer from benzoid to quinoid, which also favors charge transport and ohmic behavior in the devices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Dong H, Zhu H, Meng Q, Gong X, Hu W (2012) Organic photoresponse materials and devices. Chem Soc Rev 41:1754–1808. https://doi.org/10.1039/C1CS15205J

    Article  CAS  PubMed  Google Scholar 

  2. Hains AW, Liang Z, Woodhouse MA, Gregg BA (2010) Molecular Semiconductors in Organic Photovoltaic Cells. Chem Rev 110:6689–6735. https://doi.org/10.1021/cr9002984

    Article  CAS  PubMed  Google Scholar 

  3. Ling Q-D, Liaw D-J, Zhu C, Chan DS-H, Kang E-T, Neoh K-G (2008) Polymer electronic memories: Materials, devices and mechanisms. Prog Polym Sci 33:917–978. https://doi.org/10.1016/j.progpolymsci.2008.08.001

    Article  CAS  Google Scholar 

  4. Günes S, Neugebauer H, Sariciftci NS (2007) Conjugated Polymer-Based Organic Solar Cells. Chem Rev 107:1324–1338. https://doi.org/10.1021/cr050149z

    Article  CAS  PubMed  Google Scholar 

  5. Murad AR, Iraqi A, Aziz SB, Abdullah NS, Brza MA (2020) Conducting Polymers for Optoelectronic Devices and Organic Solar Cells: A Review. Polymers-Basel 12:1211–2627. https://doi.org/10.3390/polym12112627

    Article  CAS  Google Scholar 

  6. Hu Z, Zhang J, Hao Z, Zhao Y (2011) Influence of doped PEDOT:PSS on the performance of polymer solar cells. Sol Energ Mat Sol C 95:2763–2767. https://doi.org/10.1016/j.solmat.2011.04.040

    Article  CAS  Google Scholar 

  7. Havare AK, Can M, Demic S, Kus M, Icli S (2012) The performance of OLEDs based on sorbitol doped PEDOT:PSS. Synthetic Met 161:2734–2738. https://doi.org/10.1016/j.synthmet.2011.10.011

    Article  CAS  Google Scholar 

  8. Nardes AM, Kemerink M, De Kok M, Vinken E, Maturova K, Janssen R (2008) Conductivity, work function, and environ-mental stability of PEDOT:PSS thin films treated with sorbitol. Org Electron 9:727–734. https://doi.org/10.1016/j.orgel.2008.05.006

    Article  CAS  Google Scholar 

  9. Huang C-J, Chen K-L, Tsao Y-J, Chou D-W, Chen W-R, Meen T-H (2013) Study of solvent-doped PEDOT: PSS layer on small molecule organic solar cells. Synthetic Met 164:38–41. https://doi.org/10.1016/j.synthmet.2012.12.008

    Article  CAS  Google Scholar 

  10. Huang J-H, Kekuda D, Chu C-W, Ho K-C (2009) Electrochemical characterization of the solvent-enhanced conductivity of poly (3, 4-ethylenedioxythiophene) and its application in polymer solar cells. J Mater Chem 19:3704–3712. https://doi.org/10.1039/B822729B

    Article  CAS  Google Scholar 

  11. Cruz-Cruz I, Reyes-Reyes M, Aguilar-Frutis MA, Rodriguez A, López-Sandoval R (2010) Study of the effect of DMSO concentration on the thickness of the PSS insulating barrier in PEDOT:PSS thin films. Synthetic Met 160:1501–1506. https://doi.org/10.1016/j.synthmet.2010.05.010

    Article  CAS  Google Scholar 

  12. Luo J, Billep D, Waechtler T, Otto T, Toader M, Gordan O (2013) Enhancement of the thermoelectric properties of PEDOT: PSS thin films by post-treatment. J Mater Chem 1:7576–7583. https://doi.org/10.1039/C3TA11209H

    Article  CAS  Google Scholar 

  13. Kim MS, Park SK, Kim Y-H, Kang JW, Han J-I (2009) Glycerol-doped poly (3, 4-ethylenedioxy-thiophene): Poly (styrene sulfonate) buffer layer for improved power conversion in organic photovoltaic devices. J Electrochem Soc 156:782. https://doi.org/10.1149/1.3196243

    Article  CAS  Google Scholar 

  14. Lee M-W, Lee M-Y, Choi J-C, Park J-S, Song C-K (2010) Fine patterning of glycerol-doped PEDOT: PSS on hydrophobic PVP dielectric with ink jet for source and drain electrode of OTFTs. Org Electron 11:854–859. https://doi.org/10.1016/j.orgel.2010.01.028

    Article  CAS  Google Scholar 

  15. Crispin X, Jakobsson F, Crispin A, Grim P, Andersson P, Volodin AV (2006) The origin of the high conductivity of poly(3, 4-ethylenedioxythiophene)−poly (styrenesulfonate) (PEDOT− PSS) plastic electrodes. Chem Mater 18:4354–4360. https://doi.org/10.1021/cm061032+

    Article  CAS  Google Scholar 

  16. Yan H, Okuzaki H (2009) Effect of solvent on PEDOT/PSS nanometer-scaled thin films: XPS and STEM/AFM studies. Synthetic Met 159:2225–2228. https://doi.org/10.1016/j.synthmet.2009.07.032

    Article  CAS  Google Scholar 

  17. Mengistie DA, Wang P-C, Chu C-W (2013) Effect of molecular weight of additives on the conductivity of PEDOT:PSS and efficiency for ITO-free organic solar cells. J Mater Chem A 1:9907–9915. https://doi.org/10.1039/C3TA11726J

    Article  Google Scholar 

  18. Yagci Ö, Yesilkaya SS, Yüksel SA, Ongül F, Varal NM, Kus M et al (2016) Effect of boric acid doped PEDOT: PSS layer on the performance of P3HT: PCBM based organic solar cells. Synthetic Met 212:12–18. https://doi.org/10.1016/j.synthmet.2015.11.010

    Article  CAS  Google Scholar 

  19. Zhang B, Sun J, Katz HE, Fang F, Opila RL (2010) Promising Thermoelectric Properties of Commercial PEDOT:PSS Materials and Their Bi2Te3 Powder Composites. Appl Mater Inter 2:3170–3178. https://doi.org/10.1021/am100654p

    Article  CAS  Google Scholar 

  20. Ouyang J, Chu CW, Chen FC, Xu Q, Yang Y (2005) High-conductivity poly (3, 4-ethylenedioxythiophene): poly (styrene sulfonate) film and its application in polymer optoelectronic devices. Adv Funct Mater 15:203–208. https://doi.org/10.1002/adfm.200400016

    Article  CAS  Google Scholar 

  21. Allard S, Forster M, Souharce B, Thiem H, Scherf U (2008) Organic Semiconductors for Solution-Processable Field-Effect Transistors (OFETs). Angew Chem Int Ed 47:4070–4098. https://doi.org/10.1002/anie.200701920

    Article  CAS  Google Scholar 

  22. Ling Q-D, Liaw D-J, Teo EY-H, Zhu C, Chan DS-H, Kang E-T, Neoh K-G (2007) Polymer memories: Bistable electrical switching and device performance. Polymer 48:5182–5201. https://doi.org/10.1016/j.polymer.2007.06.025

    Article  CAS  Google Scholar 

  23. Chou T-R, Chen S-H, Chiang Y-T, Lin Y-T, Chao C-Y (2015) Highly conductive PEDOT:PSS films by post-treatment with dimethyl sulfoxide for ITO-free liquid crystal display. J Mater Chem C 3:3760–3766. https://doi.org/10.1039/C5TC00276A

    Article  CAS  Google Scholar 

  24. Pasha A, Khasim S (2020) Highly conductive organic thin films of PEDOT–PSS: silver nanocomposite treated with PEG as a promising thermo-electric material. J Mater Sci Mater Electron 31:9185–9195. https://doi.org/10.1007/s10854-020-03448-x

    Article  CAS  Google Scholar 

  25. Kawai S, Saito S, Osumi S, Yamaguchi S, Foster AS, Spijker P et al (2015) Atomically controlled substitutional boron-doping of graphene nanoribbons. Nat Commun 6:1–6. https://doi.org/10.1038/ncomms9098

    Article  CAS  Google Scholar 

  26. Zhou C, Lai C, Zhang C, Zeng G, Huang D, Cheng M et al (2018) Semiconductor/boron nitride composites: synthesis, properties, and photocatalysis applications. Appl Catal B Environ 238:6–18. https://doi.org/10.1016/j.apcatb.2018.07.011

    Article  CAS  Google Scholar 

  27. Iijima S (1991) Helical microtubules of graphitic carbon. Nature 354:56–58. https://doi.org/10.1038/354056a0

    Article  CAS  Google Scholar 

  28. Novoselov KS, Geim AK, Morozov SV, Jiang D, Zhang Y, Dubonos SV et al (2004) Electric field effect in atomically thin carbon films. Science 306:666–669. https://doi.org/10.1126/science.1102896

    Article  CAS  PubMed  Google Scholar 

  29. Zhang Y, Zhang Y, Zhang D, Liu C (2006) Novel chemical sensor for cyanides: boron-doped carbon nanotubes. J Phys Chem B 110:4671–4674. https://doi.org/10.1021/jp0602272

    Article  CAS  PubMed  Google Scholar 

  30. Dai J, Yuan J, Giannozzi P (2009) Gas adsorption on graphene doped with B, N, Al, and S: A theoretical study. Appl Phys Lett 95:232105. https://doi.org/10.1063/1.3272008

    Article  CAS  Google Scholar 

  31. Biel B, Blasé X, Triozon F, Roche S (2009) Anomalous doping effects on charge transport in graphene nanoribbons. Phys Rev Lett 102:096803. https://doi.org/10.1103/PhysRevLett.102.096803

    Article  CAS  PubMed  Google Scholar 

  32. Terrones H, Lv R, Terrones M, Dresselhaus MS (2012) The role of defects and doping in 2D graphene sheets and 1D nanoribbons. Rep Prog Phys 75:062501. https://doi.org/10.1088/0034-4885/75/6/062501

    Article  CAS  PubMed  Google Scholar 

  33. Xing M, Fang W, Yang X, Tian B, Zhang J (2014) Highly dispersed boron-doped graphene nanoribbons with enhanced conductibility and photocatalysis. Chem Commun 50:6637–6640. https://doi.org/10.1039/C4CC01341G

    Article  CAS  Google Scholar 

  34. Wu Z-S, Ren W, Xu L, Li F, Cheng H-M (2011) Doped graphene sheets as anode materials with superhigh rate and large capacity for lithium-ion batteries. ACS Nano 5:5463–5471. https://doi.org/10.1021/nn2006249

    Article  CAS  PubMed  Google Scholar 

  35. Sivaev IB, Bregadze VI (2014) Lewis acidity of boron compounds. Coordin Chem Rev 270:75–88. https://doi.org/10.1016/j.ccr.2013.10.017

    Article  CAS  Google Scholar 

  36. Yamamoto H, Ishihara K (2000) Lewis Acids in Organic Synthesis: Wiley-VCH Weinheim. Appl Organomet Chem 2:89–133. https://doi.org/10.1002/aoc.201

    Article  CAS  Google Scholar 

  37. Ishihara K, Yamamoto H (1999) Arylboron compounds as acid catalysts in organic synthetic transformations. Eur J Org Chem 3:527–538

    Article  Google Scholar 

  38. Hosmane NS (2012) Boron Science: New Technologies and Applications. CRC Press 1:579–621. https://doi.org/10.1201/b11199

    Article  Google Scholar 

  39. Chen EY-X, Marks TJ (2000) Cocatalysts for metal-catalyzed olefin polymerization: activators, activation processes, and struc-ture− activity relationships. Chem Rev 100:1391–1434. https://doi.org/10.1021/cr980462j

    Article  CAS  PubMed  Google Scholar 

  40. Erker G (2003) The (butadiene) metal complex/B (C 6 F 5) 3 pathway to homogeneous single component Ziegler-Natta catalyst systems. Chem Commun 13:1469–1476. https://doi.org/10.1039/B208898N

    Article  Google Scholar 

  41. Simocko C, Wagener KB (2013) Effects of boron-containing Lewis acids on olefin metathesis. Organometallics 32:2513–2516. https://doi.org/10.1021/om400257b

    Article  CAS  Google Scholar 

  42. Stephan DW (2010) Activation of dihydrogen by non-metal systems. Chem Commun 46:8526–8533. https://doi.org/10.1039/C0CC03313H

    Article  CAS  Google Scholar 

  43. Stephan DW (2009) Frustrated Lewis pairs: a new strategy to small molecule activation and hydrogenation catalysis. Dalton T 17:3129–3136. https://doi.org/10.1039/B819621D

    Article  Google Scholar 

  44. Jiang C, Blacque O, Fox T, Berke H (2011) Heterolytic cleavage of H2 by frustrated B/N Lewis pairs. Organometallics 30:2117–2124. https://doi.org/10.1021/om100951a

    Article  CAS  Google Scholar 

  45. Jiang C, Blacque O, Fox T, Berke H (2011) Reversible, metal-free hydrogen activation by frustrated Lewis pairs. Dalton T 40:1091–1097. https://doi.org/10.1039/C0DT01255F

    Article  Google Scholar 

  46. Runyon JW, Steinhof O, Dias HR, Calabrese JC, Marshall W, Arduengo AJ (2011) Carbene-based Lewis pairs for hydrogen activation. Aust J Chem 64:1165–1172. https://doi.org/10.1071/CH11246

    Article  CAS  Google Scholar 

  47. Mellerup SK, Wang S (2019) Boron-doped molecules for optoelectronics. T Chem 1:77–89. https://doi.org/10.1016/j.trechm.2019.01.003

    Article  CAS  Google Scholar 

  48. Loudet A, Burgess K (2007) BODIPY dyes and their derivatives: syntheses and spectroscopic properties. Chem Rev 107:4891–4932. https://doi.org/10.1021/cr078381n

    Article  CAS  PubMed  Google Scholar 

  49. Frath D, Massue J, Ulrich G, Ziessel R (2014) Luminescent Materials: Locking π-Conjugated and Heterocyclic Ligands with Boron (III). Angew Chem Int Edit 53:2290–2310. https://doi.org/10.1002/anie.201305554

    Article  CAS  Google Scholar 

  50. Jäkle F (2010) Advances in the synthesis of organoborane polymers for optical, electronic, and sensory applications. Chem Rev 110:3985–4022. https://doi.org/10.1021/cr100026f

    Article  CAS  PubMed  Google Scholar 

  51. Tanaka K, Chujo Y (2015) Recent progress of optical functional nanomaterials based on organoboron complexes with β-diketonate, ketoiminate and diiminate. NPG Asia Mat 7:e223. https://doi.org/10.1038/am.2015.118

    Article  CAS  Google Scholar 

  52. Rao Y-L, Amarne H, Wang S (2012) Photochromic four-coordinate N, C-chelate boron compounds. Coordin Chem Rev 256:759–770. https://doi.org/10.1016/j.ccr.2011.11.009

    Article  CAS  Google Scholar 

  53. Li D, Zhang H, Wang Y (2013) Four-coordinate organoboron compounds for organic light-emitting diodes (OLEDs). Chem Soc Rev 42:8416–8433. https://doi.org/10.1039/C3CS60170F

    Article  CAS  PubMed  Google Scholar 

  54. Feng J, Xiong L, Wang S, Li S, Li Y, Yang G (2013) Fluorescent Temperature Sensing Using Triarylboron Compounds and Microcapsules for Detection of a Wide Temperature Range on the Micro-and Macroscale. Adv Funct Mater 23:340–345. https://doi.org/10.1002/adfm.201201712

    Article  CAS  Google Scholar 

  55. Feng J, Tian K, Hu D, Wang S, Li S, Zeng Y et al (2011) A Triarylboron-Based Fluorescent Thermometer: Sensitive Over a Wide Temperature Range. Angew Chem-Ger Edit 123:8222–8226. https://doi.org/10.1002/anie.201102390

    Article  CAS  Google Scholar 

  56. Squeo BM, Ganzer L, Virgili T, Pasini M (2021) BODIPY-Based Molecules, a Platform for Photonic and Solar Cells. Molecules 26:153. https://doi.org/10.3390/molecules26010153

    Article  CAS  Google Scholar 

  57. Kage Y, Kang S, Mori S, Mamada M, Adachi C, Kim D, Furuta H, Shimizu S (2021) An Electron-Accepting aza-BODIPY-Based Donor–Acceptor–Donor Architecture for Bright NIR Emission. Chem Eur J 27:1–10. https://doi.org/10.1002/chem.202005360

    Article  CAS  Google Scholar 

  58. Chen P-Z, Niu L-Y, Chen Y-Z, Yang Q-Z (2017) Difluoroboron β-diketonate dyes: Spectroscopic properties and applications. Coordin Chem Rev 350:196–216. https://doi.org/10.1016/j.ccr.2017.06.026

    Article  CAS  Google Scholar 

  59. Li Z, Wang Y, Li M, Chen H, Xie Y, Li P, Guo H, Ya H (2019) Solvent-dependent and visible light-activated NIR photo-chromic dithienylethene modified by difluoroboron β-diketonates as fluorescent turn-on pH sensor. Dyes Pigm 162:339–347. https://doi.org/10.1016/j.dyepig.2018.10.049

    Article  CAS  Google Scholar 

  60. Li Z, Hu Y-J, Zhang K, Zhang Y, Hu Q-Q, Zhang X-J, Zhang X-K, Zhu YP (2020) Visible light-activated optical switching behaviors of tetra-/ triphenylethene-dithienylethene-BF2bdk triad. Dyes Pigm 182:108686. https://doi.org/10.1016/j.dyepig.2020.108686

    Article  CAS  Google Scholar 

  61. Samonina-Kosicka J, Weitzel D, Hofmann C, Hendargo H, Hanna G, Dewhirst M, Palmer G, Fraser C (2015) Luminescent Difluoroboron β-Diketonate PEG-PLA Oxygen Nanosensors for Tumor Imaging. Macromol Rapid Commun 36:694–699. https://doi.org/10.1002/marc.201500022

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Mathew AS, DeRosa CA, Demas JN, Fraser CL (2016) Difluoroboron β-diketonate materials with long-lived phosphorescence enable lifetime based oxygen imaging with a portable cost effective camera. Anal Methods 8:3109–3114. https://doi.org/10.1039/C5AY02959G

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Poon C-T, Lam WH, Wong H-L, Yam VW-W (2010) A Versatile Photochromic Dithienylethene-Containing β-Diketonate Ligand: Near-Infrared Photochromic Behavior and Photoswitchable Luminescence Properties upon Incorporation of a Bo-ron(III) Center. J Am Chem Soc 132:13992–13993. https://doi.org/10.1021/ja105537j

    Article  CAS  PubMed  Google Scholar 

  64. Monzón-González CR, Corona-Sánchez R, Narváez WEV, Rocha-Rinza T, Sánchez-Vergara ME, Toscano RA et al (2020) Synthesis and photophysical properties of conformationally restricted difluoroboron β-diketonate complexes of 1-indanone derivatives. Tetrahedron 76:131457. https://doi.org/10.1016/j.tet.2020.131457

    Article  CAS  Google Scholar 

  65. Schubert DW, Dunkel T (2003) Spin coating from a molecular point of view: its concentration regimes, influence of molar mass and distribution. Mat Res Innovat 7:314–321. https://doi.org/10.1007/s10019-003-0270-2

    Article  CAS  Google Scholar 

  66. Olivares AJ, Cosme I, Sánchez-Vergara ME, Mansurova S, Carrillo JC, Martinez HE et al (2019) Nanostructural modification of PEDOT: PSS for high charge carrier collection in hybrid frontal interface of solar cells. Polymers-Basel 11:1034. https://doi.org/10.3390/polym11061034

    Article  CAS  PubMed Central  Google Scholar 

  67. Singh V, Kumar T (2019) Study of modified PEDOT:PSS for tuning the optical properties of its conductive thin films. J Sci Adv Mater Dev 4:538–543. https://doi.org/10.1016/j.jsamd.2019.08.009

    Article  Google Scholar 

  68. Tauc J (1968) Optical properties and electronic structure of amorphous Ge and Si. Mater Res Bull 3:37–46. https://doi.org/10.1016/0025-5408(68)90023-8

    Article  CAS  Google Scholar 

  69. Laidani N, Bartali R, Gottardi G, Anderle M, Cheyssac P (2007) Optical absorption parameters of amorphous carbon films from Forouhi–Bloomer and Tauc–Lorentz models: a comparative study. J Phys Condens Mat 20:015216. https://hal.archives-ouvertes.fr/hal-00434409

  70. Mok TM, O’Leary SK (2007) The dependence of the Tauc and Cody optical gaps associated with hydrogenated amorphous silicon on the film thickness: α l Experimental limitations and the impact of curvature in the Tauc and Cody plots. J Appl Phys 102:113525. https://doi.org/10.1063/1.2817822

    Article  CAS  Google Scholar 

  71. Ibrahim SM, Bourezgui A, Al-Hossainy AF (2020) Novel synthesis, DFT and investigation of the optical and electrical proper-ties of carboxymethyl cellulose/thiobarbituric acid/copper oxide [CMC + TBA/CuO]C nanocomposite film. J Polym Res 27:264. https://doi.org/10.1007/s10965-020-02235-w

    Article  CAS  Google Scholar 

  72. Yeon C, Kim G, Lim J, Yun S (2017) Highly conductive PEDOT:PSS treated by sodium dodecyl sulfate for stretchable fabric heaters. RSC Adv 7:5888–5897. https://doi.org/10.1039/C6RA24749K

    Article  CAS  Google Scholar 

  73. Garreau S, Duvail J, Louarn G (2002) Spectroelectrochemical studies of poly (3, 4-ethylenedioxythiophene) in aqueous medium. Synthetic Met 125:325–329. https://doi.org/10.1016/S0379-6779(01)00397-6

    Article  CAS  Google Scholar 

  74. Yoo D, Kim J, Kim JH (2014) Direct synthesis of highly conductive poly(3,4-ethylenedioxythiophene):poly(4-styrenesulfonate) (PEDOT:PSS)/graphene composites and their applications in energy harvesting systems. Nano Res 7:717–730. https://doi.org/10.1007/s12274-014-0433-z

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Thanks to Rebeca Lugo-Tapia for her AFM laboratory work and to Aline Hernández-García for her SEM laboratory work.

Funding

M.E. Sánchez-Vergara acknowledges the financial support from Universidad Anáhuac México, project number NNAIASEVM16070616. Ismael Cosme-Bolaños acknowledges support from CONACYT, projects 2734 and A1-S-44624. C. Álvarez-Toledano acknowledges the financial support from DGAPA-PAPIIT, project number IN203120.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to María Elena Sánchez-Vergara.

Ethics declarations

Conflict of interest

The authors declare that there are no conflicts of interest exist.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Aguirre-Macías, Y.P., Sánchez-Vergara, M., Monzón-González, C.R. et al. Deposition and post-treatment of promising poly(3,4-ethylenedioxythiophene)-polystyrene sulfonate composite films for electronic applications. J Polym Res 28, 478 (2021). https://doi.org/10.1007/s10965-021-02842-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10965-021-02842-1

Keywords

Navigation