Skip to main content

Advertisement

Log in

Physico-chemical and piezoelectric characterization of electroactive nanofabrics based on functionalized graphene/talc nanolayers/PVDF for energy harvesting

  • Original Paper
  • Published:
Journal of Polymer Research Aims and scope Submit manuscript

Abstract

Poly(vinylidene fluoride) (PVDF) is a versatile polymer, whose dielectric, piezoelectric and ferroelectric properties can be augmented by a range of processing routes and/or additives. We developed a flexible nanogenerator using electrospun PVDF/COOH-functionalized graphene nanosheet (FGNS)/talc nanosheet (TNS) hybrid nanocomposites. TNS loading was fixed at 0.50 wt% while FGNS loading was varied (0.05, 0.10, 0.15, and 0.20 wt %) in these nanofabrics and their structure–property relationship was explored. Incorporation of FGNS led to formation of an electrically conductive network in the polymer matrix aided by TNS and electrospinning. The uniform dispersion of the filler nanosheets led to effective enhancement of the electroactive β-phase of the PVDF matrix. Crystallinity and polymorphism in these systems were explored by FTIR spectroscopy, X-ray diffraction and differential scanning calorimetry. A nanogenerator made of the nanofabric containing 0.5 wt% of TNS and 0.10 wt% of FGNS was mechanically impacted by pneumatic actuator (operating pressure 0.4 MPa), resulting in an output voltage of 12.9 V and a power density of 1.72 µW/cm2, respectively. The piezoelectric coefficient (d33) of this nanofiber system was 61 pm/V as revealed by piezoelectric force microscopy. These novel nanocomposites could be used in flexible energy-harvesting devices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  1. Wan C, Bowen CR (2017) Multiscale-structuring of polyvinylidene fluoride for energy harvesting: the impact of molecular-, micro- and macro-structure. J Mater Chem A 5:3091–3128

    Article  CAS  Google Scholar 

  2. Hu D, Yao M, Fan Y et al (2019) Strategies to achieve high performance piezoelectric nanogenerators. Nano Energy 55:288–304

    Article  CAS  Google Scholar 

  3. Liu H, Zhong J, Lee C et al (2018) A comprehensive review on piezoelectric energy harvesting technology: Materials, mechanisms, and applications. Appl Phys Rev 5:041306

  4. Chen X, Han X, Shen QD (2017) PVDF-based ferroelectric polymers in modern flexible electronics. Adv Electron Mater 3:1600460

    Article  Google Scholar 

  5. Lovinger AJ (1983) Ferroelectric polymers. Science 220:1115–1121

    Article  CAS  PubMed  Google Scholar 

  6. Ruan L, Yao X, Chang Y et al (2018) Properties and applications of the β phase poly(vinylidene fluoride). Polymers (Basel) 10:1–27

    Article  Google Scholar 

  7. Sencadas V, Gregorio R, Lanceros-Méndez S (2009) α to β phase transformation and microestructural changes of pvdf films induced by uniaxial stretch. J Macromol Sci Part B 48:514–525

    Article  CAS  Google Scholar 

  8. Yu YJ, McGaughey AJH (2016) Energy barriers for dipole moment flipping in PVDF-related ferroelectric polymers. J Chem Phys 144:14901

    Article  Google Scholar 

  9. Li L, Zhang M, Rong M, Ruan W (2014) Studies on the transformation process of PVDF from α to β phase by stretching. RSC Adv 4:3938–3943

    Article  CAS  Google Scholar 

  10. Li Q, Ke W, Chang T, Hu Z (2019) A molecular ferroelectrics induced electroactive β-phase in solution processed PVDF films for flexible piezoelectric sensors. J Mater Chem C 7:1532–1543

    Article  CAS  Google Scholar 

  11. Andrew JS, Clarke DR (2008) Effect of electrospinning on the ferroelectric phase content of polyvinylidene difluoride fibers. Langmuir 24:670–672

    Article  CAS  PubMed  Google Scholar 

  12. Zhao Z, Li J, Yuan X et al (2005) Preparation and properties of electrospun poly(vinylidene fluoride) membranes. J Appl Polym Sci 97:466–474

    Article  CAS  Google Scholar 

  13. Jiyong H, Yinda Z, Hele Z et al (2017) Mixed effect of main electrospinning parameters on the β -phase crystallinity of electrospun PVDF nanofibers. Smart Mater Struct 26:85019

    Article  Google Scholar 

  14. Ghafari E, Lu N (2019) Self-polarized electrospun polyvinylidene fluoride (PVDF) nanofiber for sensing applications. Compos Part B Eng 160:1–9

    Article  CAS  Google Scholar 

  15. Wu CM, Chou MH (2016) Polymorphism, piezoelectricity and sound absorption of electrospun PVDF membranes with and without carbon nanotubes. Compos Sci Technol 127:127–133

    Article  Google Scholar 

  16. Lee C, Wood D, Edmondson D et al (2016) Electrospun uniaxially-aligned composite nanofibers as highly-efficient piezoelectric material. Ceram Int 42:2734–2740

    Article  CAS  Google Scholar 

  17. Li J, Chen S, Liu W et al (2019) High performance piezoelectric nanogenerators based on electrospun ZnO nanorods/poly(vinylidene fluoride) composite membranes. J Phys Chem C 123:11378–11387

    Article  CAS  Google Scholar 

  18. Alam MM, Sultana A, Mandal D (2018) Biomechanical and acoustic energy harvesting from TiO2 nanoparticle modulated PVDF nanofiber made high performance nanogenerator. ACS Appl Energy Mater 1:3103–3112

    Article  CAS  Google Scholar 

  19. Shamitha C, Mahendran A, Anandhan S (2020) Effect of polarization switching on piezoelectric and dielectric performance of electrospun nanofabrics of poly(vinylidene fluoride)/Ca–Al LDH nanocomposite. J Appl Polym Sci 137:1–12

    Article  Google Scholar 

  20. Khalifa M, Mahendran A, Anandhan S (2019) Durable, efficient, and flexible piezoelectric nanogenerator from electrospun PANi/HNT/PVDF blend nanocomposite. Polym Compos 40:1663–1675

    Article  CAS  Google Scholar 

  21. Neppalli R, Wanjale S, Birajdar M, Causin V (2013) The effect of clay and of electrospinning on the polymorphism, structure and morphology of poly(vinylidene fluoride). Eur Polym J 49:90–99

    Article  CAS  Google Scholar 

  22. Liu Y-L, Li Y, Xu J-T, Fan Z-Q (2010) Cooperative effect of electrospinning and nanoclay on formation of polar crystalline phases in poly(vinylidene fluoride). ACS Appl Mater Interfaces 2:1759–1768

    Article  CAS  PubMed  Google Scholar 

  23. Wu CM, Chou MH, Zeng WY (2018) Piezoelectric response of aligned electrospun polyvinylidene fluoride/carbon nanotube nanofibrous membranes. Nanomaterials 8:1–13

    Article  Google Scholar 

  24. Yu H, Huang T, Lu M et al (2013) Enhanced power output of an electrospun PVDF/MWCNTs-based nanogenerator by tuning its conductivity. Nanotechnology 24:405401

  25. Xu Z (2017) In: Zhu H (ed) Graphene: Fabrication, Characterizations, Properties and Applications, 1st edn. Elsevier, United Kingdom

  26. Lee C, Wei X, Kysar JW, Hone J (2008) Measurement of the elastic properties and intrinsic strength of monolayer graphene. Science 321:385–388

    Article  CAS  PubMed  Google Scholar 

  27. Abolhasani MM, Shirvanimoghaddam K, Naebe M (2017) PVDF/graphene composite nanofibers with enhanced piezoelectric performance for development of robust nanogenerators. Compos Sci Technol 138:49–56

    Article  CAS  Google Scholar 

  28. Zeyrek Ongun M, Oguzlar S, Doluel EC et al (2020) Enhancement of piezoelectric energy-harvesting capacity of electrospun β-PVDF nanogenerators by adding GO and rGO. J Mater Sci Mater Electron 31:1960–1968

    Article  CAS  Google Scholar 

  29. Shetty S, Mahendran A, Anandhan S (2020) Development of a new flexible nanogenerator from electrospun nanofabric based on PVDF/talc nanosheet composites. Soft Matter 16:5679–5688

    Article  CAS  PubMed  Google Scholar 

  30. Pusty M, Sinha L, Shirage PM (2019) A flexible self-poled piezoelectric nanogenerator based on a rGO-Ag/PVDF nanocomposite. New J Chem 43:284–294

    Article  CAS  Google Scholar 

  31. Jahan N, Mighri F, Rodrigue D, Ajji A (2018) Synergistic improvement of piezoelectric properties of PVDF/ CaCO3/montmorillonite hybrid nanocomposites. Appl Clay Sci 152:93–100

    Article  CAS  Google Scholar 

  32. Shi K, Sun B, Huang X, Jiang P (2018) Synergistic effect of graphene nanosheet and BaTiO3 nanoparticles on performance enhancement of electrospun PVDF nanofiber mat for flexible piezoelectric nanogenerators. Nano Energy 52:153–162

    Article  CAS  Google Scholar 

  33. Peng Q-Y, Cong P-H, Liu X-J et al (2009) The preparation of PVDF/clay nanocomposites and the investigation of their tribological properties. Wear 266:713–720

    Article  CAS  Google Scholar 

  34. Liu L, Wang Y, Alhassan S et al (2018) Clay-facilitated aqueous dispersion of graphite and poly(vinyl alcohol) aerogels filled with binary nanofillers. Gels 4:8

    Article  PubMed Central  Google Scholar 

  35. Hummers WS, Offeman RE (1958) Preparation of graphitic oxide. J Am Chem Soc 80:1339

    Article  CAS  Google Scholar 

  36. Ryu SH, Sin JH, Shanmugharaj AM (2014) Study on the effect of hexamethylene diamine functionalized graphene oxide on the curing kinetics of epoxy nanocomposites. Eur Polym J 52:88–97

    Article  CAS  Google Scholar 

  37. López Guerra E, Shanmugharaj AM, Choi WS, Ryu SH (2013) Thermally reduced graphene oxide-supported nickel catalyst for hydrogen production by propane steam reforming. Appl Catal A Gen 468:467–474

    Article  Google Scholar 

  38. Athanasekou C, Sapalidis A, Katris I et al (2019) Mixed Matrix PVDF/graphene and composite-skin pvdf/graphene oxide membranes applied in membrane distillation. Polym Eng Sci 59:262–278

    Article  Google Scholar 

  39. Mirza-Aghayan M, Molaee Tavana M, Boukherroub R (2016) Sulfonated reduced graphene oxide as a highly efficient catalyst for direct amidation of carboxylic acids with amines using ultrasonic irradiation. Ultrason Sonochem 29:371–379

    Article  CAS  PubMed  Google Scholar 

  40. Park S, An J, Jung I et al (2009) Colloidal suspensions of highly reduced graphene oxide in a wide variety of organic solvents. Nano Lett 9:1593–1597

    Article  CAS  PubMed  Google Scholar 

  41. Nethravathi C, Rajamathi M (2008) Chemically modified graphene sheets produced by the solvothermal reduction of colloidal dispersions of graphite oxide. Carbon N Y 46:1994–1998

    Article  CAS  Google Scholar 

  42. Khalili D (2016) Graphene oxide: A promising carbocatalyst for the regioselective thiocyanation of aromatic amines, phenols, anisols and enolizable ketones by hydrogen peroxide/KSCN in water. New J Chem 40:2547–2553

    Article  CAS  Google Scholar 

  43. Samsonowicz M, Hrynaszkiewicz T, Świsłocka R et al (2005) Experimental and theoretical IR, Raman, NMR spectra of 2-, 3- and 4-aminobenzoic acids. J Mol Struct 744:345–352

    Article  Google Scholar 

  44. Coates J (2006) Interpretation of Infrared Spectra, A Practical Approach. Encycl Anal Chem 10815–10837

  45. Guo R, Qi L, Mo Z et al (2017) A new route to synthesize polyaniline-grafted carboxyl-functionalized graphene composite materials with excellent electrochemical performance. Iran Polym J 26:423–430

    Article  Google Scholar 

  46. Griffete N, Dechézelles JF, Scheffold F (2012) Dense covalent attachment of magnetic iron oxide nanoparticles onto silica particles using a diazonium salt chemistry approach. Chem Commun 48:11364–11366

    Article  CAS  Google Scholar 

  47. Jiao X, Qiu Y, Zhang L, Zhang X (2017) Comparison of the characteristic properties of reduced graphene oxides synthesized from natural graphites with different graphitization degrees. RSC Adv 7:52337–52344

    Article  CAS  Google Scholar 

  48. Fu C, Zhao G, Zhang H, Li S (2013) Evaluation and characterization of reduced graphene oxide nanosheets as anode materials for lithium-ion batteries. Int J Electrochem Sci 8:6269–6280

    CAS  Google Scholar 

  49. Behzadi M, Mahmoodi Hashemi M, Roknizadeh M et al (2021) Copper(ii) ions supported on functionalized graphene oxide: an organometallic nanocatalyst for oxidative amination of azolesviaC-H/C-N bond activation. New J Chem 45:3242–3251

    Article  CAS  Google Scholar 

  50. Zhang B, Chen Y, Liu G et al (2012) Push-Pull archetype of reduced graphene oxide functionalized with polyfluorene for nonvolatile rewritable memory. J Polym Sci Part A Polym Chem 50:378–387

    Article  CAS  Google Scholar 

  51. Lee H, Nagaishi T, Phan DN et al (2017) Effect of graphene incorporation in carbon nanofiber decorated with TiO2 for photoanode applications. RSC Adv 7:6574–6582

    Article  CAS  Google Scholar 

  52. Shan C, Wang Y, Xie S et al (2019) Free-standing nitrogen-doped graphene-carbon nanofiber composite mats: electrospinning synthesis and application as anode material for lithium-ion batteries. J Chem Technol Biotechnol 94:3793–3799

    Article  CAS  Google Scholar 

  53. Chi Q, Zhou Y, Yin C et al (2019) A blended binary composite of poly(vinylidene fluoride) and poly(methyl methacrylate) exhibiting excellent energy storage performances. J Mater Chem C 7:14148–14158

    Article  CAS  Google Scholar 

  54. Cai X, Lei T, Sun D, Lin L (2017) A critical analysis of the α, β and γ phases in poly(vinylidene fluoride) using FTIR. RSC Adv 7:15382–15389

    Article  CAS  Google Scholar 

  55. Mandal A, Nandi AK (2013) Ionic liquid integrated multiwalled carbon nanotube in a poly(vinylidene fluoride) matrix: Formation of a piezoelectric β-polymorph with significant reinforcement and conductivity improvement. ACS Appl Mater Interfaces 5:747–760

    Article  CAS  PubMed  Google Scholar 

  56. Gregorio R (2006) Determination of the α, β, and γ crystalline phases of poly(vinylidene fluoride) films prepared at different conditions. J Appl Polym Sci 100:3272–3279

    Article  CAS  Google Scholar 

  57. Ulaganathan M, Rajendran S (2010) Preparation and characterizations of PVAc/P(VdF-HFP)-based polymer blend electrolytes. Ionics (Kiel) 16:515–521

    Article  CAS  Google Scholar 

  58. Sharma M, Madras G, Bose S (2015) Contrasting effects of graphene oxide and poly(ethylenimine) on the polymorphism in poly(vinylidene fluoride). Cryst Growth Des 15:3345–3355

    Article  CAS  Google Scholar 

  59. Abdalla S, Obaid A, Al-Marzouki FM (2016) Preparation and characterization of poly(vinylidene fluoride): A high dielectric performance nano-composite for electrical storage. Results Phys 6:617–626

    Article  Google Scholar 

  60. Liu J, Lu X, Wu C (2013) Effect of preparation methods on crystallization behavior and tensile strength of poly(vinylidene fluoride) membranes. Membranes (Basel) 3:389–405

    Article  Google Scholar 

  61. Ismail AM, Mohammed MI, Fouad SS (2018) Optical and structural properties of polyvinylidene fluoride (PVDF) / reduced graphene oxide (RGO) nanocomposites. J Mol Struct 1170:51–59

    Article  CAS  Google Scholar 

  62. Al-Saygh A, Ponnamma D, AlMaadeed MAA et al (2017) Flexible pressure sensor based on PVDF nanocomposites containing reduced graphene oxide-titania hybrid nanolayers. Polymers (Basel) 9:33

    Article  PubMed Central  Google Scholar 

  63. Zhang H, Zhu Y, Li L (2020) Fabrication of PVDF/graphene composites with enhanced β phase: Via conventional melt processing assisted by solid state shear milling technology. RSC Adv 10:3391–3401

    Article  CAS  Google Scholar 

  64. Pickford T, Gu X, Heeley EL, Wan C (2019) Effects of an ionic liquid and processing conditions on the β-polymorph crystal formation in poly(vinylidene fluoride). CrystEngComm 21:5418–5428

    Article  CAS  Google Scholar 

  65. Martins P, Lopes AC, Lanceros-Mendez S (2014) Electroactive phases of poly(vinylidene fluoride): Determination, processing and applications. Prog Polym Sci 39:683–706

    Article  CAS  Google Scholar 

  66. Chhetri S, Kuila T, Murmu NC (2016) In: Nazarpour S (ed) Graphene Technology: From Laboratory to Fabrication. 1st edn. Wiley-VCH, Germany

  67. Islam A, Khan AN, Shakir MF, Islam K (2019) Strengthening of β polymorph in PVDF/FLG and PVDF/GO nanocomposites. Mater Res Express 7:15017

    Article  Google Scholar 

  68. Zhao X, Zhang Q, Chen D, Lu P (2010) Enhanced mechanical properties of graphene-based polyvinyl alcohol composites. Macromolecules 43:2357–2363

    Article  CAS  Google Scholar 

  69. Han JK, Jeon DH, Cho SY et al (2016) Nanogenerators consisting of direct-grown piezoelectrics on multi-walled carbon nanotubes using flexoelectric effects. Sci Rep 6:1–8

    Google Scholar 

  70. Gebrekrstos A, Madras G, Bose S (2018) Piezoelectric response in electrospun poly(vinylidene fluoride) fibers containing fluoro-doped graphene derivatives. ACS Omega 3:5317–5326

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Ico G, Showalter A, Bosze W et al (2016) Size-dependent piezoelectric and mechanical properties of electrospun P(VDF-TrFE) nanofibers for enhanced energy harvesting. J Mater Chem A 4:2293–2304

    Article  CAS  Google Scholar 

  72. Karan SK, Mandal D, Khatua BB (2015) Self-powered flexible Fe-doped RGO/PVDF nanocomposite: An excellent material for a piezoelectric energy harvester. Nanoscale 7:10655–10666

    Article  CAS  PubMed  Google Scholar 

  73. Sharma M, Srinivas V, Madras G, Bose S (2016) Outstanding dielectric constant and piezoelectric coefficient in electrospun nanofiber mats of PVDF containing silver decorated multiwall carbon nanotubes: Assessing through piezoresponse force microscopy. RSC Adv 6:6251–6258

    Article  CAS  Google Scholar 

  74. Singh HH, Singh S, Khare N (2017) Design of flexible PVDF/NaNbO3/RGO nanogenerator and understanding the role of nanofillers in the output voltage signal. Compos Sci Technol 149:127–133

    Article  CAS  Google Scholar 

  75. Zhang C, Fan Y, Li H et al (2018) Fully Rollable Lead-Free Poly(vinylidene fluoride)-Niobate-Based Nanogenerator with Ultra-Flexible Nano-Network Electrodes. ACS Nano 12:4803–4811

    Article  CAS  PubMed  Google Scholar 

  76. Shetty S, Ekbote GS, Mahendran A, Anandhan S (2019) Polymorphism, dielectric and piezoelectric response of organo-modified Ni–Co layered double hydroxide nanosheets dispersed electrospun PVDF nanofabrics. J Mater Sci Mater Electron 30:20703–20715

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Sawan Shetty acknowledges and thanks NITK, Surathkal for a research scholarship. The authors acknowledge Prof. Udaya Bhat K for providing FESEM and TEM facilities. The authors acknowledge Dr. M. R. Rahman for providing the XRD facility. The authors thankfully acknowledge Prof.K.N. Prabhu for providing the UTM facility. The authors thank and acknowledge BIO-AFM (BSBE)—IRCC BIO Atomic Force Microscopy (BIO-AFM) Central Facility of I.I.T. Bombay for providing with PFM facility. Sawan Shetty is thankful to Mr.Vijay Mistari for his technical assistance in PFM analysis. The authors are thankful to Ms.Prateeksha, Mr. Prajwal, and Mr. Augustine S for their assistance in SEM, TEM, and UTM analysis, respectively.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Anandhan.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 4010 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shetty, S., Shanmugharaj, A.M. & Anandhan, S. Physico-chemical and piezoelectric characterization of electroactive nanofabrics based on functionalized graphene/talc nanolayers/PVDF for energy harvesting. J Polym Res 28, 419 (2021). https://doi.org/10.1007/s10965-021-02786-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10965-021-02786-6

Keywords

Navigation