Skip to main content
Log in

Improving the low-temperature toughness of PPR pipe by compounding with PERT

  • ORIGINAL PAPER
  • Published:
Journal of Polymer Research Aims and scope Submit manuscript

Abstract

In this research, multi-layer co-extrusion technology was adopted to prepare Polypropylene random copolymer (PPR)/Polyethylene of raised temperature resistance (PERT) composite pipes. The structures and mechanical properties of PPR/PERT composite pipe were investigated by scanning electron microscopy (SEM), Dynamic thermomechanical analysis (DMA) and impact test systematically. It was found that PPR and PERT obey different deformation mechanism at low temperature. When tested at -50 °C which is lower than the glass transition temperature (Tg) of PPR, the molecular chains of PPR are frozen, which leads to the high notch sensitivity and extremely low impact strength of PPR/PERT pipe. Nevertheless, PERT whose Tg is about -78 °C could effectively inhibit the initiation and propagation of crack and therefore improve the low-temperature toughness of PPR/PERT composite pipe significantly. Furthermore, we found that the composite pipe of PPR/PERT-2:1 could combine the stiffness of PPR and the toughness of PERT most effectively, resulting in the optimized performances of PPR/PERT pipe.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Maier C, Calafut T (1998) Polypropylene: the definitive user's guide and databook. William Andrew

  2. Shao Y, Wu C, Cheng S, Zhou F, Yan H (2015) Effects of toughening propylene/ethylene graft copolymer on the crystallization behavior and mechanical properties of polypropylene random-copolymerized with a small amount of ethylene. Polym Test 41:252–263

    Article  CAS  Google Scholar 

  3. Parmar R, Bowman J (1989) Crack initiation and propagation paths for brittle failures in aligned and misaligned pipe butt fusion joints. Polym Eng Sci 29:1396–1405

    Article  CAS  Google Scholar 

  4. Pawlak A, Galeski A, Rozanski A (2014) Cavitation during deformation of semicrystalline polymers. Prog Polym Sci 39:921–958

    Article  CAS  Google Scholar 

  5. Arbeiter FJ, Frank A, Pinter G (2016) Influence of molecular structure and reinforcement on fatigue behavior of tough polypropylene materials. J Appl Polym Sci 133

  6. Grein CJGPC, Plummer CJG, Kausch HH, Germain Y, Béguelin P (2002) Influence of β nucleation on the mechanical properties of isotactic polypropylene and rubber modified isotactic polypropylene. Polymer 43:3279–3293

  7. Leng JH, Liu H, He BB, Yang B, Chen X, Qin QQ (2013) Combined effect of modified zeolite 13X and β-nucleating agent on improving β-crystal content and toughening polypropylene random copolymer. Chin J Polym Sci 31:1563–1578

    Article  CAS  Google Scholar 

  8. Zhu Y, Luo F, Bai H, Wang K, Deng H, Chen F, Zhang Q, Fu Q (2013) Synergistic effects of β-modification and impact polypropylene copolymer on brittle-ductile transition of polypropylene random copolymer. J Appl Polym Sci 129:3613–3622

    Article  CAS  Google Scholar 

  9. Li M, Li G, Zhang Z, Dai X, Mai K (2014) Enhanced β-crystallization in polypropylene random copolymer with a supported β-nucleating agent. Thermochim Acta 598:36–44

    Article  Google Scholar 

  10. Davies RJ, Zafeiropoulos NE, Schneider K, Roth SV, Burghammer M, Riekel C, Kotek JC, Stamm M (2004) The use of synchrotron X-ray scattering coupled with in situ mechanical testing for studying deformation and structural change in isotactic polypropylene. Colloid Polym Sci 282:854–866

    Article  CAS  Google Scholar 

  11. Bai H, Wang Y, Zhang Z, Han L, Li Y, Liu L, Zhou Z, Men Y (2009) Influence of annealing on microstructure and mechanical properties of isotactic polypropylene with β-phase nucleating agent. Macromolecules 42:6647–6655

    Article  CAS  Google Scholar 

  12. Luo F, Wang J, Bai H, Wang K, Deng H, Zhang Q, Chen F, Fu Q, Na B (2011) Synergistic toughening of polypropylene random copolymer at low temperature: β-Modification and annealing. Mater Sci Eng: A 528:7052–7059

    Article  CAS  Google Scholar 

  13. Chen J-W, Dai J, Yang J-H, Huang T, Zhang N, Wang Y (2013) Annealing-induced crystalline structure and mechanical property changes of polypropylene random copolymer. J Mater Res 28:3100–3108

    Article  CAS  Google Scholar 

  14. Abreu FOMS, Forte MMC, Liberman SA (2005) SBS and SEBS block copolymers as impact modifiers for polypropylene compounds. J Appl Polym Sci 95:254–263

    Article  CAS  Google Scholar 

  15. Tang W, Tang J, Yuan H, Jin R (2011) Crystallization behavior and mechanical properties of polypropylene random copolymer/poly (ethylene-octene) blends. J Appl Polym Sci 122:461–468

    Article  CAS  Google Scholar 

  16. Liu B, Shangguan Y, Song Y, Zheng Q (2013) Influences of compatibilizers on rheology and mechanical properties of propylene random copolymer/styrene-ethylene-butylene-styrene block copolymer/organic-montmorillonite nanocomposites. J Appl Polym Sci 129:973–982

    Article  CAS  Google Scholar 

  17. Ding H-L, Guo L-Y, Li D-J, Zheng D, Chen J, Qian Y-Y (2015) Effect of annealing temperature on low-temperature toughness of β-nucleated polypropylene random copolymer/ethylene-propylene-diene terpolymer blends. Chin J Polym Sci 33:256–264

    Article  CAS  Google Scholar 

  18. Râpă M, Matei E, Ghioca PN, Cincu C, Niculescu M (2016) Structural changes of modified polypropylene with thermoplastic elastomers for medical devices applications. J Adhes Sci Technol 30:1727–1740

  19. Natta G, Corradini P (1967) Structure and properties of isotactic polypropylene. Elsevier, Stereoregular Polymers and Stereospecific Polymerizations, pp 743–746

    Google Scholar 

  20. Busico V, Cipullo R (2001) Microstructure of polypropylene. Prog Polym Sci 26:443–533

    Article  CAS  Google Scholar 

  21. Köpplmayr T, Mayrhofer E, Unterweger C (2014) Thermo-mechanical properties of β-nucleated polypropylene multilayers. Polym Test 39:79–85

    Article  Google Scholar 

  22. Chen HB, Karger-Kocsis J, Wu JS, Varga J (2002) Fracture toughness of α- and β-phase polypropylene homopolymers and random- and block-copolymers. Polymer 43:6505–6514

    Article  CAS  Google Scholar 

  23. Yamamoto Y, Inoue Y, Onai T, Doshu C, Takahashi H, Uehara H (2007) Deconvolution analyses of differential scanning calorimetry profiles of β-crystallized polypropylenes with synchronized X-ray measurements. Macromolecules 40:2745–2750

    Article  CAS  Google Scholar 

  24. Ge Q, Wu T, Ding L, Yang F, Xiang M (2019) Effect of annealing on microstructure and mechanical properties of polypropylene random copolymer. Soft Mater 17:1–13

    Article  CAS  Google Scholar 

  25. Shangguan Y, Chen F, Yang J, Jia E, Zheng Q (2017) A new approach to fabricate polypropylene alloy with excellent low-temperature toughness and balanced toughness-rigidity through unmatched thermal expansion coefficients between components. Polymer 112:318–324

    Article  CAS  Google Scholar 

  26. Kai H, Qiuhui L, Yishun Z, Huijun W (2017) Research progress on toughness modification of PPR at low temperature. China Synthetic Resin and Plastics 26

  27. Gupta P, Wilkes GL, Sukhadia AM, Krishnaswamy RK, Lamborn MJ, Wharry SM, Tso CC, DesLauriers PJ, Mansfield T, Beyer FL (2005) Does the length of the short chain branch affect the mechanical properties of linear low density polyethylenes? An investigation based on films of copolymers of ethylene/1-butene, ethylene/1-hexene and ethylene/1-octene synthesized by a single site metallocene catalyst. Polymer 46:8819–8837

  28. Zhou H, Wilkes GL (1997) Comparison of lamellar thickness and its distribution determined from dsc, SAXS, TEM and AFM for high-density polyethylene films having a stacked lamellar morphology. Polymer 38:5735–5747

  29. Ding L, Wu T, Yang F, Xiang M (2017) Deformation and pore formation mechanism under tensile loading in isotactic polypropylene. Polym Int 66:1129–1140

    Article  CAS  Google Scholar 

  30. Chartoff RP, Menczel JD, Dillman SH (2009) Dynamic mechanical analysis (DMA). Thermal analysis of polymers: fundamentals and applications. 387–495

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Feng Yang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wu, Y., Ge, Q., Yang, F. et al. Improving the low-temperature toughness of PPR pipe by compounding with PERT. J Polym Res 28, 143 (2021). https://doi.org/10.1007/s10965-021-02501-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10965-021-02501-5

Keywords

Navigation