Skip to main content
Log in

Production and characterization of carbon/carbon composites from thermoplastic matrices

  • ORIGINAL PAPER
  • Published:
Journal of Polymer Research Aims and scope Submit manuscript

Abstract

Carbon-carbon composites (C/C) are those that have carbonaceous matrix reinforced with carbon fiber. They are widely used in the aerospace field, due mainly to the properties such as low density, high stiffness, and excellent thermal resistance, in comparison to the ones with polymer or metallic matrix. They are obtained through composites of polymer matrix (thermoset or thermoplastic), from the heat treatment of carbonization. The objective of this work is to produce the C/C composite material from three different thermoplastic laminates (PEKK/CF, PEEK/CF and LMPAEK/CF) as well as to compare these materials with C/C composites obtained from thermoset matrices, to show their advantages and disadvantages in relation to them. Such comparison was substantiated with TGA, DSC, SEM and XRD analyzes. In this work, the TGA showed the proposed process presents a lower mass loss, resulting in a faster and cheaper process, comparing thermoplastic with thermoset laminates. The DSC tests provided the basis for establishing the different heating rates. Through the SEM images it was possible to analyze the carbonization process. Finally, analyzes of cyclic voltammetry were made; through a comparison with Platinum electrode, C/C electrodes proved to be suitable for this application. Also, electrodes obtained from PEEK/CF presented better electrochemical responses.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Castanie B, Bouvet C, Ginot M (2020) Review of composite sandwich structure in aeronautic applications. Compos Part C Open Access 1:100004. https://doi.org/10.1016/j.jcomc.2020.100004

    Article  Google Scholar 

  2. Kappel E (2019) Distortions of composite aerospace frames due to processing, thermal loads and trimming operations and an assessment from an assembly perspective. Compos Struct 220:338–346. https://doi.org/10.1016/j.compstruct.2019.03.099

    Article  Google Scholar 

  3. Hou W, Xu X, Han X et al (2019) Multi-objective and multi-constraint design optimization for hat-shaped composite T-joints in automobiles. Thin-Walled Struct 143:106232. https://doi.org/10.1016/j.tws.2019.106232

    Article  Google Scholar 

  4. Ulian G, Moro D, Valdrè G (2021) Electronic and optical properties of graphene/molybdenite bilayer composite. Compos Struct 255:112978. https://doi.org/10.1016/j.compstruct.2020.112978

    Article  Google Scholar 

  5. Chen X, Wang Z, Wu J (2018) Processing and characterization of natural rubber/stearic acid-tetra-needle-like zinc oxide whiskers medical antibacterial composites. J Polym Res 25. https://doi.org/10.1007/s10965-017-1433-y

  6. Li Y, Qi L, Song Y, Chao X (2017) Quantitative characterization of the carbon/carbon composites components based on video of polarized light microscope. Microsc Res Tech 80:644–651. https://doi.org/10.1002/jemt.22842

    Article  CAS  PubMed  Google Scholar 

  7. Buckley JD, Edie DD (1993) Carbon-Carbon Materials and Composites, 1st ed. Elsevier

  8. Alghamdi A, Mummery P, Sheikh MA (2013) Multi-scale 3D image-based modelling of a carbon/carbon composite. Model Simul Mater Sci Eng 21:085014. https://doi.org/10.1088/0965-0393/21/8/085014

    Article  CAS  Google Scholar 

  9. Jia Z, Yang C, Jiao J et al (2017) Rhein and polydimethylsiloxane functionalized carbon/carbon composites as prosthetic implants for bone repair applications. Biomed Mater 12:045004. https://doi.org/10.1088/1748-605X/aa6e27

    Article  PubMed  Google Scholar 

  10. Feng L, Li K-Z, Lu J-H, Qi L-H (2017) Effect of growth temperature on carbon nanotube grafting morphology and mechanical behavior of carbon fibers and carbon/carbon composites. J Mater Sci Technol 33:65–70. https://doi.org/10.1016/j.jmst.2016.08.015

    Article  CAS  Google Scholar 

  11. Fitzer E (1987) The future of carbon-carbon composites. Carbon N Y 25:163–190. https://doi.org/10.1016/0008-6223(87)90116-3

    Article  CAS  Google Scholar 

  12. Su Y, Li K, Zhang L et al (2017) Effect of microwave heating time on bonding strength and corrosion resistance of Ca-P composite layers for carbon/carbon composites. J Alloys Compd 713:266–279. https://doi.org/10.1016/j.jallcom.2017.04.189

    Article  CAS  Google Scholar 

  13. Corral EL, Loehman RE (2008) Ultra-high-hemperature ceramic coatings for oxidation protection of carbon-carbon composites. J Am Ceram Soc 91:1495–1502. https://doi.org/10.1111/j.1551-2916.2008.02331.x

    Article  CAS  Google Scholar 

  14. Wang T, Zhang S, Ren B et al (2020) Optimizing mechanical and thermal expansion properties of carbon/carbon composites by controlling textures. Curr Appl Phys 20:1171–1175. https://doi.org/10.1016/j.cap.2020.08.002

    Article  Google Scholar 

  15. Voss H, Friedrich K (1987) On the wear behaviour of short-fibre-reinforced peek composites. Wear 116:1–18. https://doi.org/10.1016/0043-1648(87)90262-6

    Article  CAS  Google Scholar 

  16. Jin YS, Bian CC, Zhang ZQ et al (2017) Preparation and characterization of bio-composite PEEK/nHA. IOP Conf Ser Mater Sci Eng 167:012006. https://doi.org/10.1088/1757-899X/167/1/012006

    Article  Google Scholar 

  17. Mazur RL, Botelho EC, Costa ML, Rezende MC (2008) Avaliações térmica e reológica da matriz termoplástica PEKK utilizada em compósitos aeronáuticos. Polímeros 18:237–243. https://doi.org/10.1590/S0104-14282008000300009

    Article  CAS  Google Scholar 

  18. Lee SM (1992) Handbook of Composite Reinforcements. Wiley

  19. Tadini P, Grange N, Chetehouna K et al (2017) Thermal degradation analysis of innovative PEKK-based carbon composites for high-temperature aeronautical components. Aerosp Sci Technol 65:106–116. https://doi.org/10.1016/j.ast.2017.02.011

    Article  Google Scholar 

  20. Panda JN, Bijwe J, Pandey RK (2017) Comparative potential assessment of solid lubricants on the performance of poly aryl ether ketone (PAEK) composites. Wear 384–385:192–202. https://doi.org/10.1016/j.wear.2016.11.044

    Article  CAS  Google Scholar 

  21. Brownson DAC, Banks CE (2014) The Handbook of Graphene Electrochemistry. Springer, London, London

    Book  Google Scholar 

  22. Aristov N, Habekost A (2015) Cyclic voltammetry - A versatile electrochemical method investigating electron transfer processes. World J Chem Educ 3:115–119

    Article  CAS  Google Scholar 

  23. Kissinger PT, Heineman WR (1983) Cyclic voltammetry. J Chem Educ 60:702. https://doi.org/10.1021/ed060p702

    Article  CAS  Google Scholar 

  24. Gooding JJ (2005) Nanostructuring electrodes with carbon nanotubes: A review on electrochemistry and applications for sensing. Electrochim Acta 50:3049–3060. https://doi.org/10.1016/j.electacta.2004.08.052

    Article  CAS  Google Scholar 

  25. Calixto CMF, Mendes RK, de Oliveira AC et al (2007) Development of graphite-polymer composites as electrode materials. Mater Res 10:109–114. https://doi.org/10.1590/S1516-14392007000200003

    Article  CAS  Google Scholar 

  26. de Souza LL, Forbicini CD (2014) Uso da voltametria cíclica e da espectroscopia de impedância eletroquímica na determinação da área superficial ativa de eletrodos modificados à base de carbono. Eclética Química 39:49–67

    Article  Google Scholar 

  27. Fuertes AB, Centeno TA (1999) Preparation of supported carbon molecular sieve membranes. Carbon NY 37:679–684. https://doi.org/10.1016/S0008-6223(98)00244-9

    Article  CAS  Google Scholar 

  28. Hao M, Li Y, Gao L et al (2020) In-situ hard template synthesis of mesoporous carbon/graphite carbon nitride (C/CN-T-x) composites with highphotocatalytic activities under visible light irridation. Solid State Sci 109:106428. https://doi.org/10.1016/j.solidstatesciences.2020.106428

    Article  CAS  Google Scholar 

  29. Rajan AS, Sampath S, Shukla AK (2014) An in situ carbon-grafted alkaline iron electrode for iron-based accumulators. Energy Environ Sci 7:1110–1116. https://doi.org/10.1039/c3ee42783h

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the financial support received from FAPESP (São Paulo Research Foundation under project 2017/16970-0 and 2018/07867-3), and CNPq (National Council for Scientific and Technological Development under project 303224/2016-9). Also, the authors acknowledge Toray Advanced Composites for the donated thermoplastic laminates.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Edson Cocchieri Botelho.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

dos Santos Conejo, L., de Meneses Neto, H.R., de Oliveira, J.B. et al. Production and characterization of carbon/carbon composites from thermoplastic matrices. J Polym Res 28, 123 (2021). https://doi.org/10.1007/s10965-021-02448-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10965-021-02448-7

Keywords

Navigation