Skip to main content
Log in

Electrospinning of antibacterial cellulose acetate/polyethylene glycol fiber with in situ reduced silver particles

  • ORIGINAL PAPER
  • Published:
Journal of Polymer Research Aims and scope Submit manuscript

Abstract

A novel composition of antibacterial fiber mat, consisting of cellulose acetate (CA), polyethylene glycol (PEG) and silver particles (AgPs) was fabricated by electrospinning. This study presents a facile method for incorporating AgPs into the fiber mat by in situ reduction of silver nitrate by the electrospinning solvent, 2:1 acetone/N,N Dimethyl acetamide (DMAc). The solution of CA/PEG/AgPs was electrospun and the obtained fiber mat was characterized by field emission scanning electron microscopy (FESEM) which revealed smooth fibers of CA with a diameter in the range 250–400 nm. Interestingly, the surface of the fibers appeared striated on addition of the PEG. FESEM also showed AgPs of size 10 nm incorporated into the fiber. Formation of AgPs was also confirmed by UV–Vis, which generated Plasmon peak at 420 nm. It appeared that PEG not only stabilized the formed AgPs against agglomeration but also improved water uptake of the CA fiber mat by ~ 95%. This improved swelling property of the fiber mat shows the ability to absorb more wound exudates. Attenuated total reflectance-Fourier transform infrared spectroscopy (ATR-FTIR), differential scanning calorimetry (DSC), X-ray diffraction (XRD) and tensile test were performed to analyze the structural, thermal and mechanical properties of the CA/PEG/AgPs fiber mat. Finally, the electrospun fiber mat showed satisfactory antibacterial efficacy against gram-negative bacteria Escherichia coli (E. coli) and gram-positive bacteria Staphylococcus aureus (S. aureus).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Scheme 1
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Rodríguez-Tobías H, Morales G, Grande D (2019) Comprehensive review on electrospinning techniques as versatile approaches toward antimicrobial biopolymeric composite fibers. Mater Sci Eng C 101:306–322

    Google Scholar 

  2. Ray SS, Chen SS, Nguyen NC, Nguyen HT (2018) Electrospinning: A Versatile Fabrication Technique for Nanofibrous Membranes for Use in Desalination. Nanoscale Mater Water Purif: 247–273

  3. Kakoria A, Sinha-Ray S (2018) A Review on Biopolymer-Based Fibers via Electrospinning and Solution Blowing and Their Applications. Fibers 6:45

    Google Scholar 

  4. Haddad MY, Alharbi HF, Karim MR, Aijaz MO, Alharthi NH (2018) Preparation of TiO2 incorporated polyacronitrile electrospun nanofibers for adsorption of heavy metal ions. J Polym Res 25:218

    Google Scholar 

  5. Kamal T, Ahmad I, Khan SB, Asiri AM (2017) Synthesis and catalytic properties of silver nanoparticles supported on porous cellulose acetate sheets and wet-spun fibers. Carbohydr Polym 157:294–302

    CAS  PubMed  Google Scholar 

  6. Jatoi AW, Kim IS, Ni QQ (2019) Cellulose acetate nanofibers embedded with AgPs anchored TiO2 nanoparticles for long term excellent antibacterial applications Carbohydr. Polym 207:640–649

    CAS  Google Scholar 

  7. Lu J, Moon K, Xu J, Wong CP (2006) Synthesis and dielectric properties of novel high- K polymer composites containing in-situ formed silver nanoparticles for embedded capacitor applications J Mater Chem 16:1543–1548

    CAS  Google Scholar 

  8. Zheng K, Setyawati MI, Leong DT, Xie J (2018) Antimicrobial silver nanomaterials. Coord Chem Rev 357:1–17

    CAS  Google Scholar 

  9. Cheng Q, Li C, Pavlinek V, Saha P, Wang H (2006) Surface-modified antibacterial TiO2 / Ag+ nanoparticles : Preparation and properties. Appl Surf Sci 252:4154–4160

    CAS  Google Scholar 

  10. Man XU (2008) Electrical properties of nano-silver / polyacrylamide / ethylene vinyl acetate composite. J Shanghai Univ 12:85–90

    Google Scholar 

  11. Černík M, Thekkae Padil VV (2013) Green synthesis of copper oxide nanoparticles using gum karaya as a biotemplate and their antibacterial application Int J Nanomedicine 889

  12. Ngadaonye JI, Geever LM, Killion J, Higginbotham CL (2013) Development of novel chitosan-poly(N, N-diethylacrylamide) IPN films for potential wound dressing and biomedical applications. J Polym Res 20:161

    Google Scholar 

  13. Sung JH, Ma-R H, Kim JO, Lee JH, Kim YI, Kim JH, Chang SW, Jin SG, Kim JA, Lyoo WS, Han SS, Ku SK, Yong CS, Han-G C (2010) Gel characterisation and in vivo evaluation of minocycline-loaded wound dressing with enhanced wound healing using polyvinyl alcohol and chitosan. Int J Pharm 392:232–240

    CAS  PubMed  Google Scholar 

  14. Murakami K, Aoki H, Nakamura S, Shin-ichiro N, Takikawa M, Hanzawa M, Kishimoto S, Hattori H, Tanaka Y, Kiyosawa T, Sato Y, Ishihara M (2010) Hydrogel blends of chitin/chitosan, fucoidan and alginate as healing-impaired wound dressings. Biomaterials 31:83–90

    CAS  PubMed  Google Scholar 

  15. Gianino E, Miller C, Gilmore J (2018) Smart Wound Dressings for Diabetic Chronic Wounds. Bioeng 5:51

    CAS  Google Scholar 

  16. Mir M, Najabat M, Afifa A, Ayesha B, Munam G, Shizza A (2018) Synthetic polymeric biomaterials for wound healing : a review. Prog Biomater 7:1–21

    PubMed  PubMed Central  Google Scholar 

  17. He FL, Deng X, Zhou YQ, Zhang TD, Liu YL, Ye YJ, Yin DC (2019) Controlled release of antibiotics from poly-ε-caprolactone/polyethylene glycol wound dressing fabricated by direct-writing melt electrospinning. Polym Adv Technol 30:25–434

    Google Scholar 

  18. Liu Y, Wang Y, Zhao J (2019) Design, optimization and in vitro - in vivo evaluation of smart nanocaged carrier delivery of multifunctional PEG-chitosan stabilized silybin nanocrystals. Int J Biol Macromol 124:667–680

    CAS  PubMed  Google Scholar 

  19. Anbarasu M, Anandan M, Chinnasamy E, Gopinath V, Balamurugan K (2015) Molecular and Biomolecular Spectroscopy Synthesis and characterization of polyethylene glycol ( PEG ) coated Fe3O4 nanoparticles by chemical co-precipitation method for biomedical applications. Acta Part A Mol Biomol Spectrosc 135:536–539

    CAS  Google Scholar 

  20. Fleitas-Salazar N, Silva-Campa E, Pedroso-Santana S, Tanori J, Pedroza-Montero MR, Riera R (2017) Effect of temperature on the synthesis of silver nanoparticles with polyethylene glycol: new insights into the reduction mechanism. J Nanoparticle Res 19:113

    Google Scholar 

  21. Díaz-Cruz C, Alonso Nuñez G, Espinoza-Gómez H, Flores-López LZ (2016) Effect of molecular weight of PEG or PVA as reducing-stabilizing agent in the green synthesis of silver-nanoparticles. Eur Polym J 83:265–277

    Google Scholar 

  22. Moore TL, Lorenzo LR, Hirsch V, Balog S, Urban D, Jud C, Rutishauser BR, Lattuada M, Fink AP (2015) Nanoparticle colloidal stability in cell culture media and impact on cellular interactions. Chem Soc Rev 44:6287–6305

    CAS  PubMed  Google Scholar 

  23. Guerrini L, Alvarez-Puebla RA, Pazos-Perez N (2018) Surface modifications of nanoparticles for stability in biological fluids. Materials 11:1–28

    Google Scholar 

  24. Chen C, Wang L, Huang Y (2011) Electrospun phase change fibers based on polyethylene glycol / cellulose acetate blends. Appl Energy 88:3133–3139

    CAS  Google Scholar 

  25. Chen C, Wang L, Huang Y (2009) Crosslinking of the electrospun polyethylene glycol / cellulose acetate composite fibers as shape-stabilized phase change materials. Mater Lett 63:569–571

    CAS  Google Scholar 

  26. Yang Y, Li W, Yu DG, Wang G, Williams GR, Zhang Z (2019) Tunable drug release from nanofibers coated with blank cellulose acetate layers fabricated using tri-axial electrospinning. Carbohydr Polym 203:228–237

    CAS  PubMed  Google Scholar 

  27. Wutticharoenmongkol P, Hannirojram P, Nuthong P (2019) Gallic acid-loaded electrospun cellulose acetate nanofibers as potential wound dressing materials. Polym Adv Technol 30:1135–1147

    CAS  Google Scholar 

  28. Khoshnevisan K, Hassan M, Hadi S, Shadab S, Sarrafzadeh MH, Larijani B, Dorkoosh FA, Haghpanah V, Khorramizadeh MR (2018) Cellulose acetate electrospun nanofibers for drug delivery systems: Applications and recent advances. Carbohydr Polym 198:131–141

    CAS  PubMed  Google Scholar 

  29. Khoshnevisan K, Maleki H, Samadian H, Shahsavari S, Sarrafzadeh MH, Larijani B, Dorkoosh FA, Haghpanah V, Khorramizadeh MR (2018) Cellulose acetate electrospun nanofibers for drug delivery systems: Applications and recent advances. Carbohydr polym 198:131–141

    CAS  PubMed  Google Scholar 

  30. Goetz LA, Naseri N, Nair SS, Karim Z, Mathew AP (2018) All cellulose electrospun water purification membranes nanotextured using cellulose nanocrystals. Cellulose 25:3011–3023

    CAS  Google Scholar 

  31. Matos RJR, Chaparro CIP, Silva JC, Almeida M, Paulo J, Soares PIP (2018) Electrospun composite cellulose acetate / iron oxide nanoparticles non- woven membranes for magnetic hyperthermia applications. Carbohydr Polym 198:9–16

    CAS  PubMed  Google Scholar 

  32. Um-i-Zahra S, Shen XX, Li H, Zhu L (2014) Study of sustained release drug-loaded nanofibers of cellulose acetate and ethyl cellulose polymer blends prepared by electrospinning and their in-vitro drug release profiles. J Polym Res 21:602

    Google Scholar 

  33. Abdel-Mohsen AM, Pavliňák D, Čileková M, Lepcio P, Abdel-Rahman RM, Jančář J (2019) Electrospinning of hyaluronan/polyvinyl alcohol in presence of in-situ silver nanoparticles: Preparation and characterization. Int J Biol Macromol 139:730–739

    CAS  PubMed  Google Scholar 

  34. Wang Y, Li P, Xiang P, Lu J, Yuan J, Shen J (2016) Electrospun polyurethane/keratin/AgNP biocomposite mats for biocompatible and antibacterial wound dressings. J Mater Chem B 4:635–648

    CAS  PubMed  Google Scholar 

  35. Uttayarat P, Jetawattana S, Suwanmala P, Eamsiri J, Tangthong T, Pongpat S (2012) Antimicrobial electrospun silk fibroin mats with silver nanoparticles for wound dressing application. Fiber Polym 13:999–1006

    CAS  Google Scholar 

  36. Lee SJ, Heo DN, Moon JH, Ko WK, Lee JB, Bae MS, Park SW, Kim JE, Lee DH, Kim EC, Lee CH (2014) Electrospun chitosan nanofibers with controlled levels of silver nanoparticles. Preparation, characterization and antibacterial activity. Carbohydr Polym 111:530–537

    CAS  PubMed  Google Scholar 

  37. Abdelgawad AM, Hudson SM, Rojas OJ (2014) Antimicrobial wound dressing nanofiber mats from multicomponent (chitosan/silver-NPs/polyvinyl alcohol) systems. Carbohydr Polym 100:166–178

    CAS  PubMed  Google Scholar 

  38. Mahmud MM, Perveen A, Matin MA, Arafat MT (2018) Effects of binary solvent mixtures on the electrospinning behavior of poly (vinyl alcohol). Mater Res Express 5:115407

    Google Scholar 

  39. Majumder S, Matin MA, Sharif A, Arafat MT (2019) Understanding solubility, spinnability and electrospinning behaviour of cellulose acetate using different solvent systems. Bull Mater Sci 42:171

    Google Scholar 

  40. Mahmud M, Zaman S, Perveen A, Jahan RA, Islam F, Arafat MT (2019) Controlled release of curcumin from electrospun fiber mats with antibacterial activity. J Drug Deliv Sci Technol 55:101386

    Google Scholar 

  41. Chou WL, Yu DG, Yang MC, Jou CH (2007) Effect of molecular weight and concentration of PEG additives on morphology and permeation performance of cellulose acetate hollow fibers. Sep Purif Technol 57:209–219

    CAS  Google Scholar 

  42. Wongchitphimon S, Wang R, Jiraratananon R, Shi L, Heng C (2011) Effect of polyethylene glycol (PEG) as an additive on the fabrication of polyvinylidene fluoride- co -hexafluropropylene (PVDF-HFP) asymmetric microporous hollow fiber membranes. J Memb Sci 369:329–338

    CAS  Google Scholar 

  43. Nezarati RM, Eifert MB, Cosgriff-hernandez E (2013) Effects of Humidity and Solution Viscosity on Electrospun Fiber Morphology. Tissue Eng Part C 19:810–819

    CAS  Google Scholar 

  44. Lide DR (2003) CRC Handbook of Chemistry and Physics. CRC Press LLC, Boca Raton

    Google Scholar 

  45. Hendrick E, Frey M (2014) Increasing Surface Hydrophilicity in Poly (Lactic Acid) Electrospun Fibers by Addition of Pla-b-Peg Co-Polymers. J Eng Fiber Fabr 9

  46. Li S, Jia N, Ma M, Zhang Z, Liu Q, Sun R (2011) Cellulose – silver nanocomposites : Microwave-assisted synthesis, characterization, their thermal stability, and antimicrobial property. Carbohydr Polym 86:441–447

    CAS  Google Scholar 

  47. Li Y, Xiao Y, Liu C (2016) The Horizon of Materiobiology : A Perspective on Material-Guided Cell Behaviors and Tissue Engineering. Chem Rev 117:4376–4421

    Google Scholar 

  48. Yu H, Chen X, Cai J, Ye D, Wu Y, Fan L, Liu P (2019) Novel porous three-dimensional nanofibrous scaffolds for accelerating wound healing. Chem Eng J 369:253–262

    CAS  Google Scholar 

  49. Cui W, Li X, Zhou S, Weng J (2008) Degradation patterns and surface wettability of electrospun fibrous mats. Polym Degrad Stab 93:731–738

    CAS  Google Scholar 

  50. Montazer M, Malekzadeh SB (2012) Electrospun antibacterial nylon nanofibers through in situ synthesis of nanosilver: preparation and characteristics. J Polym Res 10:9980

    Google Scholar 

  51. Duan YY, Jia J, Wang SH, Yan W, Jin L, Wang ZY (2007) Preparation of antimicrobial poly (ϵ-caprolactone) electrospun nanofibers containing silver-loaded zirconium phosphate nanoparticles. J Appl Polym 106:1208–1214

    CAS  Google Scholar 

  52. Smitha SL, Nissamudeen KM, Philip D, Gopchandran KG (2008) Studies on surface plasmon resonance and photoluminescence of silver nanoparticles. Acta Part A Mol Biomol Spectrosc 71:186–190

    CAS  Google Scholar 

  53. Ibrahim HM, El-Zairy EMR (2016) Carboxymethylchitosan nanofibers containing silver nanoparticles: Preparation, Characterization and Antibacterial activity. J Appl Pharm Sci 6:43–48

    CAS  Google Scholar 

  54. Zheng Y, Cai C, Zhang F, Monty J, Linhardt RJ, Simmons TJ (2016) Can natural fibers be a silver bullet? Antibacterial cellulose fibers through the covalent bonding of silver nanoparticles to electrospun fibers. Nanotechnology 27:055102

    PubMed  Google Scholar 

  55. Halaciuga I, Laplante S, Goia DV (2011) Precipitation of dispersed silver particles using acetone as reducing agent. J Colloid Interface Sci 354:620–623

    CAS  PubMed  Google Scholar 

  56. Trivedi MK, Nayak G, Patil S, Tallapragada RM, Mishra R (2015) Impact of Biofield Treatment on Chemical and Thermal Properties of Cellulose and Cellulose Acetate. J Bioeng Biomed Sci 5

  57. Zheng J, Song F, Wang Y (2014) In-situ synthesis, characterization and antimicrobial activity of viscose fiber loaded with silver nanoparticles. Cellulose 21:3097–3105

    CAS  Google Scholar 

  58. Jeong SH, Yeo SY, Yi SC (2005) The effect of filler particle size on the antibacterial properties of compounded polymer / silver fibers. J Mater Sci 40:5407–5411

    CAS  Google Scholar 

  59. Mohseni M, Shamloo A, Aghababaie Z, Afjoul H, Abdi S (2019) A comparative study of wound dressings loaded with silver sulfadiazine and silver nanoparticles : In vitro and in vivo evaluation. Int J Pharm 564:350–358

    CAS  PubMed  Google Scholar 

  60. Reza A, Kalantary H, Yousefi M, Ramazani A, Morsali A (2012) Synthesis and Characterization of Ag Nanoparticles @ Polyethylene fibers under Ultrasound irradiation. Ultrason Sonochem 19:853–857

    Google Scholar 

  61. Zhang Q, Wu D, Qi S, Wu Z, Yang X, Jin R (2007) Preparation of ultra-fine polyimide fibers containing silver nanoparticles via in situ technique. Mater Lett 61:4027–4030

    CAS  Google Scholar 

  62. Ghorani B, Russell SJ, Goswami P (2013) Controlled morphology and mechanical characterisation of electrospun cellulose acetate fibre webs. Int J Polym Sci 1–12

  63. Amany A, El-Rab SFG, Gad F (2012) Effect of reducing and protecting agents on size of silver nanoparticles and their anti-bacterial activity. Der Pharma Chemica 4:53–65

    Google Scholar 

  64. Ahmad A, Jamshed F, Riaz T, Waheed S, Sabir A, AlAnezi AA, Adrees M, Jamil T (2016) Self-sterilized composite membranes of cellulose acetate / polyethylene glycol for water desalination. Carbohydr Polym 149:207–216

    CAS  PubMed  Google Scholar 

  65. Tungprapa S, Jangchud I, Supaphol P (2007) Release characteristics of four model drugs from drug-loaded electrospun cellulose acetate fiber mats. Polymer 48:5030–5041

    CAS  Google Scholar 

  66. Sabitha M, Rajiv S (2015) Preparation and characterization of ampicillin-incorporated electrospun polyurethane scaffolds for wound healing and infection control. Polym Eng Sci 55:541–548

    CAS  Google Scholar 

  67. Capanema NSV, Mansur AAP, Jesus AC, Carvalho SM, Oliveira LC, Mansur HS (2018) Superabsorbent crosslinked carboxymethyl cellulose-PEG hydrogels for potential wound dressing applications. Int J Biol Macromol 106:1218–1234

    CAS  PubMed  Google Scholar 

  68. Zhang C, Salick MR, Cordie TM, Ellingham T, Dan Y, Turng LS (2015) Incorporation of poly(ethylene glycol) grafted cellulose nanocrystals in poly(lactic acid) electrospun nanocomposite fibers as potential scaffolds for bone tissue engineering. Mater Sci Eng C 49:463–471

    CAS  Google Scholar 

  69. Zafar M, Ali M, Khan SM, Jamil T, Butt MTZ (2012) Effect of additives on the properties and performance of cellulose acetate derivative membranes in the separation of isopropanol/water mixtures. Desalination 285:359–365

    CAS  Google Scholar 

  70. Shi Q, Vitchuli N, Nowak J, Noar J, Caldwell JM, Breidt F, Bourham M, McCord M, Zhang X (2011) One-step synthesis of silver nanoparticle-filled nylon 6 nanofibers and their antibacterial properties. J Mater Chem 21:10330–10335

    CAS  Google Scholar 

  71. Shao W, Wu J, Wang S, Huang M, Liu X, Zhang R (2017) Construction of silver sulfadiazine loaded chitosan composite sponges as potential wound dressings. Carbohydr Polym 157:1963–1970

    CAS  PubMed  Google Scholar 

  72. Xu Z, Li J, Zhou H, Jiang X, Yang C, Wang F (2016) Morphological and swelling behavior of cellulose. RSC Adv 6:43626–43633

    CAS  Google Scholar 

  73. Altinisik A, Yurdakoc K (2011) Synthesis, Characterization, and Enzymatic Degradation of Chitosan / PEG Hydrogel Films. J Appl Polym 122:1556–1563

    CAS  Google Scholar 

  74. Ghaffari T, Hamedi-rad F (2015) Effect of Silver Nano-particles on Tensile Strength of Acrylic Resins J Dent Res Dent Clin Dent. Prospects 9:40

    Google Scholar 

  75. Dastjerdi R, Montazer M, Shahsavan S (2009) A new method to stabilize nanoparticles on textile surfaces. Colloids Surf A Physicochem Eng Asp 345:202–210

    CAS  Google Scholar 

  76. Celebioglu A, Topuz F, Yildiz ZI, Uyar T (2019) One-step green synthesis of antibacterial silver nanoparticles embedded in electrospun cyclodextrin nanofibers. Carbohydr Polym 207:471–479

    CAS  PubMed  Google Scholar 

  77. Guzman M, Dille J, Godet S (2012) Synthesis and antibacterial activity of silver nanoparticles against gram-positive and gram-negative bacteria. Nanomedicine Nanotechnology Biol Med 8:37–45

    CAS  Google Scholar 

  78. Xu X, Yang Q, Wang Y, Yu H, Chen X, Jing X (2006) Biodegradable electrospun poly(l-lactide) fibers containing antibacterial silver nanoparticles. Eur Polym J 42:2081–2087

    CAS  Google Scholar 

Download references

Acknowledgement

This project was funded by Bangladesh University of Engineering and Technology (BUET) under grant no: DAERS/CASR/R-01/2015/DR-2359(102).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M Tarik Arafat.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 1863 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Majumder, S., Matin, M., Sharif, A. et al. Electrospinning of antibacterial cellulose acetate/polyethylene glycol fiber with in situ reduced silver particles. J Polym Res 27, 381 (2020). https://doi.org/10.1007/s10965-020-02356-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10965-020-02356-2

Keywords

Navigation