Skip to main content
Log in

Microwave assisted synthesis and spectroscopic characterisation of diphenyl carbonate functionalised nanoporous starch

  • ORIGINAL PAPER
  • Published:
Journal of Polymer Research Aims and scope Submit manuscript

Abstract

The functionalisation of potato starch using a greener and biologically important molecule, i.e., diphenyl carbonate under microwave irradiation to obtain nanoporous diphenyl carbonate/starch composites is demonstrated. A series of spectroscopic techniques were used to investigate the bonding between diphenyl carbonate and starch, along with morphology and nature of modified starch. The regular surface of pristine starch was noticeably modified to a porous structure as evidenced by FESEM and TEM. Both 1H and 13C NMR studies revealed that the features of diphenyl carbonate were retained in modified starch. The line widths of 13C NMR signals were enhanced by 190 − 360 Hz referring to the crystalline nature of the modified form. FT IR studies showed bands at 1641 and 1774 cm−1 which confirms the linkage of diphenyl carbonate with starch. FT IR studies supported a substantial removal of hydrogen bonding from the native starch surface after phenylation, referring to hydrophobic nature of modified starch. The shift of band position from 867 to 854 cm − 1 in Raman studies is attributed to the C—C—H or C—O—C bending linkage of carbon to diphenyl carbonate. The X-ray diffraction and thermogravimetric studies further supported the rigid and porous structure of modified starch. These modified starch possessing open structures is envisaged to act as a host materials for adsorption of hydropbobic molecules.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4.
Fig. 5.
Fig. 6
Scheme 1
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Alay SCA, Meireles MAA (2015) Physiochemical properties, modifications and applications of starches from different botanical sources. Food Sci Technol 35:215–236. https://doi.org/10.1590/1678-457X.6749

    Article  Google Scholar 

  2. Hong J, Anzeng X, Brennan CS, Brenan M, Han Z (2016) Recent advances in techniques for starch esters and the applications. A Review. Foods 5:50–64. https://doi.org/10.3390/foods5030050

    Article  CAS  Google Scholar 

  3. Neelam K, Vijay S, Lalit S (2012) Various techniques for the modification of starch and the application of its derivatives. Int J Pharm 3:25–31

    Google Scholar 

  4. Lewandowicz G, Jankowski T, Formal J (2000) Effect of microwave radiation on physico-chemical properties and structure of cereal starches. Carbohydrate Polym 42:193–199. https://doi.org/10.1016/s0144-8617(99)00155-1

    Article  CAS  Google Scholar 

  5. Ashogbon AO, Akintayo ET (2014) Recent trend in the physical and chemical modifications of starches from different botanical sources: A review. Starch/Starke 66:41–57. https://doi.org/10.1002/star.201300106

    Article  CAS  Google Scholar 

  6. Ackar D, Babic J, Jozinovic A, Milicevic B, Jokic S, Milicevic R, Rajic M, Subaric D (2015) Starch modification by organic acids and their derivatives A review. Molecules 20:19554–19570. https://doi.org/10.3390/molecules201019554

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Gilet A, Quettier C, Wiatz V, Bricout H, Ferreira M, Rousseau C, Monflier E, Tilloy S (2018) Unconventional media and technologies for starch etherification and esterification. Green Chem 00:1–3. https://doi.org/10.1039/C7GC03135A

    Article  Google Scholar 

  8. Xavier S, Periandy S, Carthigavpan K, Sebastin S (2016) Molecular docking, TG/DTA, molecular structure, harmonic vibrational frequencies and TD-DFT analysis of diphenyl carbonate by DFT approach. J Mol Struc 1125:204–216. https://doi.org/10.1016/j.molstruc.2016.06.071

    Article  CAS  Google Scholar 

  9. Lewicka K, Siemion P, Kurcok P (2015) Chemical modifications of starch: microwave effect. Int J Polym Sci 2015:1–10. https://doi.org/10.1155/2015/867697

    Article  CAS  Google Scholar 

  10. Palav T, Seetharaman K (2006) Impact of microwave heating on the physico-chemical properties of a starch-water model system. Carbohydrate Polym 67:596–604. https://doi.org/10.1016/j.carbpol.2006.07.006

    Article  CAS  Google Scholar 

  11. Xie Y, Yan M, Yuan S, Sun S, Huo Q (2013) Effect of microwave treatment on the physicochemical properties of potato starch granules. Chem Cent J 7:113–119. https://doi.org/10.1186/1752-153X-7-11

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Mostafa KM, EL-Sanabary AA (2020) Green and efficient tool for grafting acrylonitrile onto starch nanoparticles using microwave irradiation. J Polym Res 27:92–101. https://doi.org/10.1007/s10965-020-02069-6

    Article  CAS  Google Scholar 

  13. Hadi NA, Wiege B, Stabenau S, Marefati A, Rayner M (2020) Comparison of three methods to determine the degree of substitution of quinoa and rice starch acetates, propionates and butyrates: direct stoichiometry, FT IR and 1H-NMR. Foods 9:83–96. https://doi.org/10.3390/foods9010083

    Article  CAS  PubMed Central  Google Scholar 

  14. Todica M, Nagy EM, Niculaescu C, Stan O, Cioica N (2016) XRD investigation of some thermal degraded starch-based materials. J Spec 2016:1–6

    Google Scholar 

  15. Pozo C, Rodríguez SL, Bouza R, Barral L, Castano J, Muller N, Restrepo I (2018) Study of the structural order of native starch granules using combined FTIR and XRD analysis. J Polym Res 25:266–273. https://doi.org/10.1007/s10965-018-1651-y

    Article  CAS  Google Scholar 

  16. Tizzotti MJ, Sweedman MC, Tang D, Scaaefer C, Gilbert RG (2011) New 1H NMR procedure for the characterization of native and modified food grade starches. J Agric Food Chem 59:6913–6919. https://doi.org/10.1021/jf201209z

    Article  CAS  PubMed  Google Scholar 

  17. Hou C, Chen Y, Chen W, Li W (2011) Microwave-assisted methylation of cassava starch with dimethyl carbonate. Carbohydrate Res 346:1178–1181. https://doi.org/10.1016/j.carres.2011.04.001

    Article  CAS  Google Scholar 

  18. Hou C, Chen Y, Chen W, Li W (2012) Thiocarbamide and microwave-accelerated green methylation of cassava starch with dimethyl carbonate. Carbohydrate Res 355:87–91. https://doi.org/10.1016/j.carres.2012.04.017

    Article  CAS  Google Scholar 

  19. Gutierrez-Mora A, Baianu CI (1991) Carbon-13 nuclear magnetic resonance studies of chemically modified waxy maize starch, Corn syrups, and maltodextrins. Comparisons with potato starch and potato maltodextrins. J Agric Food Chem 39:1057–1062. https://doi.org/10.1021/jf00006a011

    Article  Google Scholar 

  20. Jordan T, Schimdt S, Liebert T, Heinze T (2014) Molten imidazole-a starch solvent. Green Chem 16:1967–1973. https://doi.org/10.1039/C3GC41818A

    Article  CAS  Google Scholar 

  21. Uliniuc A, Popa M, Drockenmuller E, Boisson F, Leonard D, Hamaide T (2013) Toward tunable amphiphilic copolymers via CuAAC click chemistry of oligocaprolactones on to starch backbone. Carbohydrate Polym 96:259–269. https://doi.org/10.1016/j.carbpol.2013.03.047

    Article  CAS  Google Scholar 

  22. Nicanor AB, Acosta-García G, Guemes-Vera N, Montanez-Soto JL, Vivar-Vera MLA, Gonzalez-Cruz L (2016) Fourier transform Infrared and Raman spectroscopic study of the effect of the thermal treatment and extraction methods on the characteristics of ayocote bean starches. J Food Sci Technol 54:933–943. https://doi.org/10.1007/s13197-016-23701

    Article  Google Scholar 

  23. Kizil R, Irudayaraj J, Seetharaman K (2000) Characterization of irradiated starches by using FT-Raman and FTIR spectroscopy. J Agric Food Chem 50:3912–3918. https://doi.org/10.1021/jf011652p

    Article  CAS  Google Scholar 

  24. Musa MB, Yoo MJ, Kang TJ, Kolawole EG, Ishiaku US, Yakubu MK (2013) Whang DJ (2013) Characterization and thermal properties of thermoplastic potato starch. J Engg Technol 2:9–15

    Google Scholar 

  25. Mahajan HS, Sonar YA (2019) Esterification of pea starch with octenyl succinic anhydride using conventional and microwave irradiation method: synthesis and characterization. J Polym Res 26:247–256. https://doi.org/10.1007/s10965-019-1887-1

    Article  CAS  Google Scholar 

  26. Dupuy N, Laureyns J (2002) Recognition of starches by Raman spectroscopy. Carbohydrate Polym 49:83–90. https://doi.org/10.1016/S0144-8617(01)00304-6

    Article  CAS  Google Scholar 

  27. Almeida MR, Alves RS, Nascimbem LBLR, Stephani R, Poppi RJ, de Oliveira LFC (2010) Determination of amylose content in starch using Raman spectroscopy and multivariate calibration analysis. Anal Bioanal Chem 397:2693–2701. https://doi.org/10.1007/s00216-010-3566-2

    Article  CAS  PubMed  Google Scholar 

  28. Herrara JDV, Aguirre JCL, Castano VDQ (2017) Physical-chemical characteristics determination of potato starch. Acta-Agron 66:323–330. https://doi.org/10.15446/acag.v66n3.52419

    Article  Google Scholar 

  29. Kapusniak J, Ciesielski W, Koziol JJ, Tomasik P (1999) Reaction of starch with α-amino acids. Eur Food Res Technol 209:325–329. https://doi.org/10.1007/s002170050503

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Authors are grateful to Indian Institute of Technology, Bhubaneswar and Indian Institute of Science, Bangalore for NMR and Raman measurement studies, respectively.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sushanta Kumar Badamali.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Swain, Y., Badamali, S.K. Microwave assisted synthesis and spectroscopic characterisation of diphenyl carbonate functionalised nanoporous starch. J Polym Res 27, 315 (2020). https://doi.org/10.1007/s10965-020-02277-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10965-020-02277-0

Keywords

Navigation