Skip to main content
Log in

Preparation and characterization of a controlled-release formulation based on carbofuran loaded in ionically cross-linked chitosan microparticles

  • ORIGINAL PAPER
  • Published:
Journal of Polymer Research Aims and scope Submit manuscript

Abstract

A controlled-release formulation (CRF) of the nematicide carbofuran (CAB) was prepared using ionically cross-linked chitosan (CHS). Four cross-linker agents were assessed, among which sulfate (SUL) obtained the highest encapsulation efficiency. Several parameters for the encapsulation of the pesticide were optimized, including pH, SUL/CHS molar ratio, stirring time, and stirring speed. The EE and the pesticide loading (PL) were 67% and 24%, respectively, in the optimized process. Scanning electron microscopy (SEM) images for empty microparticles (EMP) showed a rough and porous surface, with particle size of 1023 nm, whereas the CRF surface was found to be smoother, with a particle size of 1127 nm. The release kinetics of CAB from CRF and commercial carbofuran (CC) were evaluated in water under laboratory conditions, and the release data were fitted to the generalized Korsmeyer-Peppas model. The results indicated that the release of CAB was accomplished by a diffusion-controlled process. The CAB release from CRF was slower than that from CC, and required 6 days for 70% release, whereas CC required 5 days for 100% delivery of the pesticide. A diffusion coefficient (n) of 0.603 was determined, meaning that delivery was not governed by Fick’s laws of diffusion, but by an anomalous transport mechanism.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. Bianchi FJ, Booij CJH, Tscharntke T (2006) Sustainable pest regulation in agricultural landscapes: a review on landscape composition, biodiversity and natural pest control. Proceedings of the Royal Society B: Biological Sciences. https://doi.org/10.1098/rspb.2006.3530

    Article  PubMed  Google Scholar 

  2. Carvalho FP (2006) Agriculture, pesticides, food security and food safety. Environ Sci Policy. https://doi.org/10.1016/j.envsci.2006.08.002

    Article  Google Scholar 

  3. Ortiz HML, Sánchez SE, Dantán GE, Castrejón GML (2013) Pesticide biodegradation: mechanisms, genetics and strategies to enhance the process. Biodegradation-life of Science. https://doi.org/10.5772/56098

    Article  PubMed  Google Scholar 

  4. Jada MY, Gungula DT, Jacob I (2011) Efficacy of carbofuran in controlling root-knot nematode (Meloidogyne javanica Whitehead, 1949) on cultivars of bambara groundnut (Vigna subterranea (L.) Verdc.) in Yola, Nigeria. International Journal of Agronomy. https://doi.org/10.1155/2011/358213

    Article  Google Scholar 

  5. Kumar J, Shakil NA, Khan MA, Malik K, Walia S (2011) Development of controlled release formulations of carbofuran and imidacloprid and their bioefficacy evaluation against aphid, Aphis gossypii and leafhopper, Amrasca biguttula Ishida on potato crop. Journal of Environmental Science and Health, Part B. https://doi.org/10.1080/03601234.2012.592066

    Article  Google Scholar 

  6. Choudhary G, Kumar J, Walla S, Parsad R, Parmar BS (2006a) Development of controlled release formulations of carbofuran and evaluation of their efficacy against Meloidogyne incognita. J Agric Food Chem. https://doi.org/10.1021/jf060153r

    Article  PubMed  Google Scholar 

  7. Donovan S, Taggart M, Richards N (2012) An overview of the chemistry, manufacture, environmental fate and detection of carbofuran. Global Perspectives and Forensic Approache, Carbofuran and Wildlife Poisoning, pp 1–18

    Google Scholar 

  8. Gupta RC (1994) Carbofuran toxicity. Journal of Toxicology and Environmental Health. https://doi.org/10.1080/15287399409531931

    Article  PubMed  Google Scholar 

  9. Moreira RA, da Silva MA, Rocha O (2015) The toxicity of carbofuran to the freshwater rotifer Philodina roseola. Ecotoxicology. https://doi.org/10.1007/s10646-014-1408-2

    Article  PubMed  Google Scholar 

  10. Aktar W, Sengupta D, Chowdhury A (2009) Impact of pesticides use in agriculture: their benefits and hazards. Interdisciplinary Toxicology. https://doi.org/10.2478/v10102-009-0001-7

    Article  PubMed  PubMed Central  Google Scholar 

  11. Lan J, Sun W, Chen L, Zhou H, Fan Y, Diao X, Zhao H (2020) Simultaneous and rapid detection of carbofuran and 3-hydroxy-carbofuran in water samples and pesticide preparations using lateral-flow immune-chromatographic assay. Food and Agricultural Immunology. https://doi.org/10.1080/09540105.2019.1708272

    Article  Google Scholar 

  12. Neri BMC, Chakraborty S (2019) Carbohydrate polymers as controlled release devices for pesticides. J Carbohydr Chem. https://doi.org/10.1080/07328303.2019.1568449

    Article  Google Scholar 

  13. Zhang J, Li M, Fan T, Xu Q, Wu Y, Chen C, Huang Q (2013) Construction of novel amphiphilic chitosan copolymer nanoparticles for chlorpyrifos delivery. J Polym Res. https://doi.org/10.1007/s10965-013-0107-7

    Article  Google Scholar 

  14. Nuruzzaman Md, Rahman MM, Liu Y, Naidu R (2016) Nanoencapsulation, nano-guard for pesticides: a new window for safe application. J Agric Food Chem. https://doi.org/10.1021/acs.jafc.5b05214

    Article  PubMed  Google Scholar 

  15. Naga JNV, Muthu PP, Narayan SS, Surya PKP, Seetha RP, Srawan GY (2010) Microencapsulation techniques, factors influencing encapsulation efficiency. J Microencapsul. https://doi.org/10.3109/02652040903131301

    Article  Google Scholar 

  16. Shukla PG, Rajagopalan N, Bhaskar C, Siravam S (1991) Crosslinked starch-urea formaldehyde (St-UF) as a hydrophilic matrix for encapsulation: studies in swelling and release of carbofuran. J Control Release. https://doi.org/10.1016/0168-3659(91)90073-M

    Article  Google Scholar 

  17. Fernández UR, Gines JM, Morillo E (2000) Development of controlled release formulations of alachlor in ethylcellulose. J Microencapsul. https://doi.org/10.1080/026520400288300

    Article  Google Scholar 

  18. Fernández PM, Villafranca SM, Flores CF, Garrido HFJ, Pérez GS (2005) Use of bentonite and activated carbon in controlled release formulations of carbofuran. J Agric Food Chem. https://doi.org/10.1021/jf051342x

    Article  PubMed  Google Scholar 

  19. Shakil NA, Singh MK, Pandey A, Kumar J, Pankaj ParmarSingh VSMK, Pandey RP, Watterson AC (2010) Development of poly (ethylene glycol) based amphiphilic copolymers for controlled release delivery of carbofuran. Journal of Macromolecular Science®, Part A: Pure and Applied Chemistry. https://doi.org/10.1080/10601320903527038

    Article  Google Scholar 

  20. Adaka P, Kumar J, Dey D (2015) Evaluation of Controlled release formulations of carbofuran against YMV in Soybean and their residues. Ann Pl Protec Sci 23(1):127–130

    Google Scholar 

  21. Chen L, Zhou X, Lin G, Chen H, Hao L, Zhou H (2019) Synthesis of pH‐responsive isolated soy protein/carboxymethyl chitosan microspheres for sustained pesticide release. J Appl Polym Sci. https://doi.org/10.1002/app.48358

    Article  Google Scholar 

  22. Qu B, Luo Y (2020) Chitosan-based hydrogel beads: Preparations, modifications and applications in food and agriculture sectors–A review. Int J Biol Macromol. https://doi.org/10.1016/j.ijbiomac.2020.02.240

    Article  PubMed  Google Scholar 

  23. Naskar S, Koutsu K, Sharma S (2019) Chitosan-based nanoparticles as drug delivery systems: a review on two decades of research. J Drug Target. https://doi.org/10.1080/1061186X.2018.1512112

    Article  PubMed  Google Scholar 

  24. Rodríguez RR, Espinosa-A H, Velasquillo MC, García CZY (2019) Composite hydrogels based on gelatin, chitosan and polyvinyl alcohol to biomedical applications: a review. International Journal of Polymeric Materials and Polymeric Biomaterials. https://doi.org/10.1080/00914037.2019.1581780

    Article  Google Scholar 

  25. Pandey AR, Singh US, Momin M, Bhavsar C (2017) Chitosan: Application in tissue engineering and skin grafting. J Polym Res. https://doi.org/10.1007/s10965-017-1286-4

    Article  Google Scholar 

  26. Malerba M, Cerana R (2016) Chitosan effects on plant systems. Int J Mol Sci. https://doi.org/10.3390/ijms17070996

    Article  PubMed  PubMed Central  Google Scholar 

  27. Maluin FN, Hussein MZ (2020) Chitosan-based agronanochemicals as a sustainable alternative in crop protection. Molecules. https://doi.org/10.3390/molecules25071611

    Article  PubMed  PubMed Central  Google Scholar 

  28. Kumaraswamy RV, Kumar S, Choudhary RC, Pal A, Raliya R, Biswas P, Saharan V (2018) Engineered chitosan based nanomaterials: bioactivities, mechanisms and perspectives in plant protection and growth. Int J Biol Macromol. https://doi.org/10.1016/j.ijbiomac.2018.02.130

    Article  PubMed  Google Scholar 

  29. Bibi S, Nawaz M, Yasin T, Riaz M (2016) Chitosan/CNTs nanocomposite as green carrier material for pesticides controlled release. J Polym Res. https://doi.org/10.1007/s10965-016-1055-9

    Article  Google Scholar 

  30. Kashyap PL, Xiang X, Heiden P (2015) Chitosan nanoparticle-based delivery systems for sustainable agriculture. Int J Biol Macromol. https://doi.org/10.1016/j.ijbiomac.2015.02.039

    Article  PubMed  Google Scholar 

  31. Hack B, Egger H, Uhlemann J, Henriet M, Wirth W, Vermeer AWP, Duff DG (2012) Advanced agrochemical formulations through encapsulation strategies. Chem Ing Tec. https://doi.org/10.1002/cite.201100212

    Article  Google Scholar 

  32. Mayyas MA, Al-Remawi MM (2012) Properties of chitosan nanoparticles formed using sulfate anions as crosslinking bridges. American Journal of Applied Sciences. https://doi.org/10.3844/ajassp.2012.1091.1100

    Article  Google Scholar 

  33. Lapitsky Y (2014) Ionically crosslinked polyelectrolyte nanocarriers: Recent advances and open problems. Curr Opin Colloid Interface Sci. https://doi.org/10.1016/j.cocis.2014.03.014

    Article  Google Scholar 

  34. Sacco P, Paoletti S, Cok M, Asaro F, Abrami M, Grassi M, Donati I (2016) Insight into the ionotropic gelation of chitosan using tripolyphosphate and pyrophosphate as cross-linkers. Int J Biol Macromol. https://doi.org/10.1016/j.ijbiomac.2016.07.056

    Article  PubMed  Google Scholar 

  35. Shu XZ, Zhu KJ (2002a) The influence of multivalent phosphate structure on the properties of ionically cross-linked chitosan films for controlled drug release. Eur J Pharm Biopharm. https://doi.org/10.1016/S0939-6411(02)00052-8

    Article  PubMed  Google Scholar 

  36. Gan Q, Wang T (2007) Chitosan nanoparticle as protein delivery carrier—systematic examination of fabrication conditions for efficient loading and release. Colloids Surf, B Biointerfaces. https://doi.org/10.1016/j.colsurfb.2007.04.009

    Article  PubMed  Google Scholar 

  37. Argin-Soysal S, Kofinas P, Lo YM (2009) Effect of complexation conditions on xanthan–chitosan polyelectrolyte complex gels. Food Hydrocolloids. https://doi.org/10.1016/j.foodhyd.2007.12.011

    Article  Google Scholar 

  38. Shukla PG, Sivaram S, Mohanty B (1992) Structure of carbofuran in crosslinked starch matrix by 13C nmr: correlation of release and swelling kinetics with the dynamic behaviour of polymer chains. Polymer. https://doi.org/10.1016/0032-3861(92)90644-C

    Article  Google Scholar 

  39. Yang Y, Cheng J, Garamus VM, Na Li, Zou A (2018) Preparation of an environmentally friendly formulation of the insecticide nicotine hydrochloride through encapsulation in chitosan/tripolyphosphate nanoparticles. J Agric Food Chem. https://doi.org/10.1021/acs.jafc.7b04147

    Article  PubMed  PubMed Central  Google Scholar 

  40. Balázs N, Sipos P (2007) Limitations of pH-potentiometric titration for the determination of the degree of deacetylation of chitosan. Carbohyd Res. https://doi.org/10.1016/j.carres.2006.11.016

    Article  Google Scholar 

  41. Kumar S, Bhanjana G, Sharma A, Sidhu MC, Dilbaghi N (2014) Synthesis, characterization and on-field evaluation of pesticide loaded sodium alginate nanoparticles. Carbohyd Polym. https://doi.org/10.1016/j.carbpol.2013.10.025

    Article  Google Scholar 

  42. Xu Y, Wang L, Tong Y, Xiang S, Guo X, Li J, Gao H, Wu X (2016) Study on the preparation, characterization, and release behavior of carbosulfan/polyurethane microcapsules. J Appl Polym Sci. https://doi.org/10.1002/app.43844

    Article  Google Scholar 

  43. Costa P, Sousa LJM (2001) Modeling and comparison of dissolution profiles. Eur J Pharm Sci. https://doi.org/10.1016/S0928-0987(01)00095-1

    Article  PubMed  Google Scholar 

  44. Korsmeyer RW, Gurny R, Doelker E, Buri P, Peppas NA (1983) Mechanisms of solute release from porous hydrophilic polymers. Int J Pharm. https://doi.org/10.1016/0378-5173(83)90064-9

    Article  Google Scholar 

  45. Shu XZ, Zhu KJ (2002b) Controlled drug release properties of ionically cross-linked chitosan beads: the influence of anion structure. Int J Pharm. https://doi.org/10.1016/S0378-5173(01)00943-7

    Article  PubMed  Google Scholar 

  46. Cai Y, Lapitsky Y (2014) Formation and dissolution of chitosan/pyrophosphate nanoparticles: is the ionic crosslinking of chitosan reversible? Colloids Surf, B. https://doi.org/10.1016/j.colsurfb.2013.11.032

    Article  Google Scholar 

  47. Berth G, Voigt A, Dautzenberg H, Donath E, Mohwald H (2002) Polyelectrolyte complexes and layer-by-layer capsules from chitosan/chitosan sulfate. Biomacromol. https://doi.org/10.1021/bm0200130

    Article  Google Scholar 

  48. Berger J, Reist M, Mayer JM, Felt O, Peppas NA, Gurny R (2004) Structure and interactions in covalently and ionically crosslinked chitosan hydrogels for biomedical applications. Eur J Pharm Biopharm. https://doi.org/10.1016/S0939-6411(03)00161-9

    Article  PubMed  Google Scholar 

  49. Mazancová P, Nemethova V, Trelova D, Klesckova L, Lacik I (2018) Dissociation of chitosan/tripolyphosphate complexes into separate components upon pH elevation. Carbohyd Polym. https://doi.org/10.1016/j.carbpol.2018.03.030

    Article  Google Scholar 

  50. Morales J, Manso JA, Mejuto JC (2012) Basic hydrolysis of carbofuran in the presence of cyclodextrins. Supramol Chem. https://doi.org/10.1080/10610278.2012.688121

    Article  Google Scholar 

  51. Oscarson JL, Izatt RM, Brown PR, Palwak Z, Gillespie SE, Christensen JJ (1988) Thermodynamic quantities for the interaction of SO2−4 with H+ and Na+ in aqueous solution from 150 to 320°C. J Solution Chem. https://doi.org/10.1007/BF00646553

    Article  Google Scholar 

  52. Huang Y, Lapitsky Y (2013) Determining the colloidal behavior of ionically cross-linked polyelectrolytes with isothermal titration calorimetry. J Phys Chem B. https://doi.org/10.1021/jp405384b

    Article  PubMed  PubMed Central  Google Scholar 

  53. Abdel HSM, Hathout RM, Sammour OA (2014) Towards better modeling of chitosan nanoparticles production: screening different factors and comparing two experimental designs. Int J Biol Macromol. https://doi.org/10.1016/j.ijbiomac.2013.11.041

    Article  Google Scholar 

  54. Peniche C, Argüelles MW, Peniche H, Acosta N (2003) Chitosan: an attractive biocompatible polymer for microencapsulation. Macromol Biosci. https://doi.org/10.1002/mabi.200300019

    Article  Google Scholar 

  55. Patel BK, Parikh RH, Aboti PS (2013) Development of oral sustained release rifampicin loaded chitosan nanoparticles by design of experiment. Journal of drug delivery. https://doi.org/10.1155/2013/370938

    Article  PubMed  PubMed Central  Google Scholar 

  56. Fan W, Yan W, Xu Z, Ni H (2012) Formation mechanism of monodisperse, low molecular weight chitosan nanoparticles by ionic gelation technique. Colloids Surf, B. https://doi.org/10.1016/j.colsurfb.2011.09.042

    Article  Google Scholar 

  57. Atifi A, Czarnecki K, Mountacer H, Ryan MD (2013) In situ study of the photodegradation of carbofuran deposited on TiO2 film under UV light, using ATR-FTIR coupled to HS-MCR-ALS. Environ Sci Technol. https://doi.org/10.1021/es400800v

    Article  PubMed  Google Scholar 

  58. Motiei M, Kashanian S (2017) Novel amphiphilic chitosan nanocarriers for sustained oral delivery of hydrophobic drugs. Eur J Pharm Sci. https://doi.org/10.1016/j.ejps.2016.12.035

    Article  PubMed  Google Scholar 

  59. Zou X, Zhao X, Ye L, Wang Q, Li H (2015) Preparation and drug release behavior of pH-responsive bovine serum albumin-loaded chitosan microspheres. J Ind Eng Chem. https://doi.org/10.1016/j.jiec.2014.06.012

    Article  Google Scholar 

  60. Brugnerotto J, Lizardi J, Goycoolea FM, Argüelles-Monal W, Desbrieres J, Rinaudo M (2001) An infrared investigation in relation with chitin and chitosan characterization. Polymer. https://doi.org/10.1016/S0032-3861(00)00713-8

    Article  Google Scholar 

  61. Dimzon IK, Knepper D, Thomas P (2015) Degree of deacetylation of chitosan by infrared spectroscopy and partial least squares. Int J Biol Macromol. https://doi.org/10.1016/j.ijbiomac.2014.09.050

    Article  PubMed  Google Scholar 

  62. Silverstein RM, Bassler GC, Morrill TC (1991) Spectrometric Identification of Organic Compounds, 5th edn. John Wiley & Sons, Inc., New York, pp 124–125

    Google Scholar 

  63. Antoniou J, Liu F, Majeed H, Qi J, Yokoyama W, Zhong F (2015) Physicochemical and morphological properties of size-controlled chitosan–tripolyphosphate nanoparticles. Colloids Surf, A. https://doi.org/10.1016/j.colsurfa.2014.10.040

    Article  Google Scholar 

  64. Dong Y, Kiong NW, Shen S, Kim S, Tan RBH (2013) Scalable ionic gelation synthesis of chitosan nanoparticles for drug delivery in static mixers. Carbohyd Polym. https://doi.org/10.1016/j.carbpol.2013.02.013

    Article  Google Scholar 

  65. Espinosa AH, Enríquez RKE, García ME, Ramírez SC, Lobato CC, Vernon CJ (2013) Interrelationship between the zeta potential and viscoelastic properties in coacervates complexes. Carbohyd Polym. https://doi.org/10.1016/j.carbpol.2013.02.053

    Article  Google Scholar 

  66. Chien CL, Metters AT (2006) Hydrogels in controlled release formulations: network design and mathematical modeling. Adv Drug Deliv Rev. https://doi.org/10.1016/j.addr.2006.09.004

    Article  Google Scholar 

  67. Paradelo M, Pérez RP, Arias EM, López PJ (2012) Influence of pore water velocity on the release of carbofuran and fenamiphos from commercial granulates embedded in a porous matrix. J Contam Hydrol. https://doi.org/10.1016/j.jconhyd.2012.10.004

    Article  PubMed  Google Scholar 

  68. Grillo R, Espiritu Santo PA, Silva de Melo NF, Martins PR, Oliveira FL, Tonello PS, Dias FNL, Henrique RA, Lima R, Fernandes FL (2011) Controlled release system for ametryn using polymer microspheres: preparation, characterization and release kinetics in water. J Hazard Mater. https://doi.org/10.1016/j.jhazmat.2010.12.044

    Article  PubMed  Google Scholar 

  69. Kamble V, Sawant M, Mahanwar P (2018) Microencapsulation of Cypermethrin Via Interfacial Polymerization for Controlled Release Application. Materials Today: Proceedings. https://doi.org/10.1016/j.matpr.2018.06.636

    Article  Google Scholar 

  70. Soares PIP, Sousa AI, Carvalho SJ, Ferreira IMM, Novo CMM, Borges JP (2016) Chitosan-based nanoparticles as drug delivery systems for doxorubicin: optimization and modelling. Carbohyd Polym. https://doi.org/10.1016/j.carbpol.2016.03.028

    Article  Google Scholar 

  71. Aguzzi C, Cerezo P, Salcedo I, Sánchez R, Viseras C (2010) Mathematical models describing drug release from biopolymeric delivery systems. Mater Technol. https://doi.org/10.1179/175355510X12723642365566

    Article  Google Scholar 

  72. Siepmann J, Siepmann F (2012) Modeling of diffusion controlled drug delivery. J Control Release. https://doi.org/10.1016/j.jconrel.2011.10.006

    Article  PubMed  Google Scholar 

  73.  Bruschi, M. L. (2015). Strategies to modify the drug release from pharmaceutical systems. Woodhead Publishingg, pp 74-77. https://doi.org/10.1016/B978-0-08-100092-2.00005-9

  74. Choudhary G, Kumar J, Walla S, Parsad R, Parmar BS (2006) Controlled Release of Carbofuran in Water from some Polymeric Matrices. Pesticide Research Journal 18(1):65

    CAS  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge financial support from Vicerrectoría de Investigaciones of Universidad del Valle in Cali-Colombia. We also want to thank to the CIMAV center in Monterrey, México for the use of different types of equipment throughout the experimental session.

Funding

This work was supported by Vicerrectoría de Investigaciones de la Universidad del Valle (Cali-Colombia).

Author information

Authors and Affiliations

Authors

Contributions

MIPM led and designed the study. RASA designed and conducted the experiments, and drafted the manuscript. MSD provided the use of the equipment for product characterization. All authors read and approved the manuscript.

Corresponding author

Correspondence to Rubén Albeiro Sánchez-Andica.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sánchez-Andica, R.A., Páez-Melo, M.I. & Sánchez-Domínguez, M. Preparation and characterization of a controlled-release formulation based on carbofuran loaded in ionically cross-linked chitosan microparticles. J Polym Res 27, 332 (2020). https://doi.org/10.1007/s10965-020-02274-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10965-020-02274-3

Keywords

Navigation