Skip to main content
Log in

Effect of aspect ratio of multi-wall carbon nanotubes on the dispersion in ethylene-α-octene block copolymer and the properties of the Nanocomposites

  • ORIGINAL PAPER
  • Published:
Journal of Polymer Research Aims and scope Submit manuscript

Abstract

Effects of aspect ratio of multi-wall carbon nanotubes (MWCNTs) on the dispersion of MWCNTs in ethylene-α-octene block copolymer (OBC) and the properties of OBC/MWCNTs nanocomposites were studied, and two series of MWCNTs with different aspect ratios based on the same length and the same diameter were considered. Scanning electron microscope (SEM) and transmission electron microscope (TEM) results show that small and large agglomerates induced by intra- and inter-entanglement of MWCNTs are present for MWCNTs with high aspect ratio having smaller diameter and larger length, respectively. Rheological, electrical and tensile properties of OBC/MWCNTs nanocomposites are related to the aspect ratio and dispersion of MWCNTs. The formation of agglomerates, especially large agglomerates, influence the network perfection, weakening the contribution of MWCNTs to the rheology and electrical properties. The inter-entanglement shows less negative effect on the enhancement for the modulus and strength of OBC nanocomposites, and intra-entanglement of MWCNTs shows discounted enhancing properties. The aspect ratios of MWCNTs related to not only the length but also the diameter play the dominant role on the dispersion in polymers and the properties of polymer nanocomposites.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Iijima S (1991). Nature 354:56–58

    CAS  Google Scholar 

  2. Hou PX, Liu C, Cheng HM (2008). Carbon 46:2003–2025

    CAS  Google Scholar 

  3. Salvetat JP, Bonard JM, Thomson NH, Kulik AJ, Forro L, Benoit W, Zuppiroli L (1999). Appl Phys A-Mater Sci Process 69:255–260

    CAS  Google Scholar 

  4. Qian D, Wagner GJ, Liu WK, Yu MF, Ruoff RS (2002). Appl Mech Rev 55:495–533

    Google Scholar 

  5. Kaneto K, Tsuruta M, Sakai G, Cho W-Y, Ando Y (1999). Synth Met 103:2543–2546

    CAS  Google Scholar 

  6. Pop E, Mann D, Wang Q, Goodson K, Dai H (2006). Nano Lett 6:96–100

    CAS  PubMed  Google Scholar 

  7. Sang Z, Ke K, Manas-Zloczower I (2018). ACS Appl Mater Interfaces 10:36483–36492

    CAS  PubMed  Google Scholar 

  8. Kumar S, Li B, Caceres S, Maguire R-G, Zhong W-H (2009). Nanotechnology 20:465708

    PubMed  Google Scholar 

  9. Andrews R, Weisenberger M-C (2004). Curr Opin Solid State Mater Sci 8:31–37

    CAS  Google Scholar 

  10. Ounaies Z (2003). Compos Sci Technol 63:1637–1646

    CAS  Google Scholar 

  11. Dang ZM, Shehzad K, Zha JW, Mujahid A, Hussain T, Nie J, Shi CY (2011). Compos Sci Technol 72:28–35

    CAS  Google Scholar 

  12. Inukai S, Niihara K, Noguchi T, Ueki H, Magario A, Yamada E, Inagaki S, Endo M (2011). Ind Eng Chem Res 50:8016–8022

    CAS  Google Scholar 

  13. Liu Y, Li J, Pan Z (2011). J Polym Res 18:2055–2060

    CAS  Google Scholar 

  14. Garg P, Singh BP, Kumar G, Gupta T, Pandey I, Seth RK, Tandon RP, Mathur RB (2010). J Polym Res 18:1397–1407

    Google Scholar 

  15. Yang X, Zhan Y, Yang J, Zhong J, Zhao R, Liu X (2011). J Polym Res 19:9806

    Google Scholar 

  16. Ke K, Pötschke P, Wiegand N, Krause B, Voit B (2016). ACS Appl Mater Interfaces 8:14190–14199

    CAS  PubMed  Google Scholar 

  17. Huang J, Mao C, Zhu Y, Jiang W, Yang X (2014). Carbon 73:267–274

    CAS  Google Scholar 

  18. Cui W, Du F, Zhao J, Zhang W, Yang Y, Xie X, Mai YW (2011). Carbon 49:495–500

    CAS  Google Scholar 

  19. Liu H, Gao J, Huang W, Dai K, Zheng G, Liu C, Shen C, Yan X, Guo J, Guo Z (2016). Nanoscale 8:12977–12989

    CAS  PubMed  Google Scholar 

  20. Chen Z, Qin Y, Weng D, Xiao Q, Peng Y, Wang X, Li H, Wei F, Lu Y (2009). Adv Funct Mater 19:3420–3426

    CAS  Google Scholar 

  21. Yin H, Dittrich B, Farooq M, Kerling S, Wartig K-A, Hofmann D, Huth C, Okolieocha C, Altstädt V, Schönhals A, Schartel B (2015). J Polym Res 22:140

    Google Scholar 

  22. Xu Y, Xu W, Bao J (2014). J Polym Res 21:543

    Google Scholar 

  23. Chi CH, Hsu YC, Tseng LC, Suen SY, Wu JY, Lee RH (2013). J Polym Res 20:269

    Google Scholar 

  24. Krause B, Barbier C, Kunz K, Pötschke P (2018). Polymer 159:75–85

    CAS  Google Scholar 

  25. Wu D, Wu L, Zhou W, Sun Y, Zhang M (2010). J Polym Scie Pt B- Polym Phys 48:479–489

    CAS  Google Scholar 

  26. Ayatollahi MR, Shadlou S, Shokrieh MM, Chitsazzadeh M (2011). Polym Test 30:548–556

    CAS  Google Scholar 

  27. Krause B, Mende M, Pötschke P, Petzold G (2010). Carbon 48:2746–2754

    CAS  Google Scholar 

  28. Krause B, Petzold G, Pegel S, Pötschke P (2009). Carbon 47:602–612

    CAS  Google Scholar 

  29. Guo J, Liu Y, Prada-Silvy R, Tan Y, Azad S, Krause B, Pötschke P, Grady BP (2014). J Polym Sci B Polym Phys 52:73–83

    CAS  Google Scholar 

  30. Castillo FY, Socher R, Krause B, Headrick R, Grady BP, Prada-Silvy R, Pötschke P (2011). Polymer 52:3835–3845

    CAS  Google Scholar 

  31. Krause B, Villmow T, Boldt R, Mende M, Petzold G, Pötschke P (2011). Compos Sci Technol 71:1145–1153

    CAS  Google Scholar 

  32. Menzer K, Krause B, Boldt R, Kretzschmar B, Weidisch R, Pötschke P (2011). Compos Sci Technol 71:1936–1943

    CAS  Google Scholar 

  33. Zhai Y, Zhang R, Yang W, Yang M (2017). Polymer 114:44–53

    CAS  Google Scholar 

  34. Li T, Pu JH, Ma LF, Bao RY, Qi GQ, Yang W, Xie BH, Yang MB (2015). Polym Chem 6:7160–7170

    CAS  Google Scholar 

  35. Zha XJ, Pu JH, Ma LF, Li T, Bao RY, Bai L, Liu ZY, Yang MB, Yang W (2018). Compos Pt A-Appl Sci Manuf 105:118–125

    CAS  Google Scholar 

  36. Zha XJ, Li T, Bao RY, Bai L, Liu ZY, Yang W, Yang MB (2017). Compos Sci Technol 139:17–25

    CAS  Google Scholar 

  37. Krause B, Carval J, Pötschke P (2017) AIP Conf Proc 1914:030007–030001–030007-030005

  38. Zhang QH, Fang F, Zhao X, Li YZ, Zhu MF, Chen DJ (2008). J Phys Chem B 112:12606–12611

    CAS  PubMed  Google Scholar 

  39. Huang CL, Wang C (2011). Carbon 49:2334–2344

    CAS  Google Scholar 

  40. Seo MK, Park SJ (2004). Chem Phys Lett 395:44–48

    CAS  Google Scholar 

  41. Kim JA, Seong DG, Kang TJ, Youn JR (2006). Carbon 44:1898–1905

    CAS  Google Scholar 

  42. Song YS (2006). Rheol Acta 46:231–238

    CAS  Google Scholar 

  43. Pötschke P, Fornes TD, Paul DR (2002). Polymer 43:3247–3255

    Google Scholar 

  44. Pötschke P, Abdel-Goad M, Alig I, Dudkin S, Lellinger D (2004). Polymer 45:8863–8870

    Google Scholar 

  45. Koerner H, Liu WD, Alexander M, Mirau P, Dowty H, Vaia RA (2005). Polymer 46:4405–4420

    CAS  Google Scholar 

  46. Tan Y, Fang L, Xiao J, Song Y, Zheng Q (2013). Polym Chem 4:2939–2944

    CAS  Google Scholar 

  47. Bauhofer WG, Kovacs JZ (2009). Compos Sci Technol 69:1486–1498

    CAS  Google Scholar 

  48. Zhang J, Mine M, Zhu D, Matsuo M (2009). Carbon 47:1311–1320

    CAS  Google Scholar 

  49. Wang Q, Dai J, Li W, Wei Z, Jiang J (2008). Compos Sci Technol 68:1644–1648

    CAS  Google Scholar 

  50. Spitalsky Z, Tasis D, Papagelis K, Galiotis C (2010). Prog Polym Sci 35:357–401

    CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (NNSFC grants 51422305 and 51721091).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Rui-Ying Bao or Wei Yang.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(DOCX 1506 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Qian, J., Pu, JH., Zha, XJ. et al. Effect of aspect ratio of multi-wall carbon nanotubes on the dispersion in ethylene-α-octene block copolymer and the properties of the Nanocomposites. J Polym Res 26, 275 (2019). https://doi.org/10.1007/s10965-019-1915-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10965-019-1915-1

Keywords

Navigation