Skip to main content
Log in

Micellization and sol-gel transition of novel thermo- and pH-responsive ABC triblock copolymer synthesized by RAFT

  • ORIGINAL PAPER
  • Published:
Journal of Polymer Research Aims and scope Submit manuscript

Abstract

A well-defined thermo- and pH-responsive ABC-type triblock copolymer monomethoxy poly(ethylene glycol)-b-poly(2-(2-methoxyethoxy) ethyl methacrylate-co-N-hydroxymethyl acrylamide)-b-poly(2-(diethylamino) ethyl methacrylate), mPEG-b-P(MEO2MA-co-HMAM)-b-PDEAEMA, was synthesized by reversible addition-fragmentation chain transfer polymerization (RAFT). The ABC-type triblock copolymer was endowed thermo- and pH-responsive, corresponding to the thermosensitive properties of P(MEO2MA-co-HMAM) and pH-responsive properties PDEAEMA segments, respectively. The thermo- and pH-responsive properties of copolymer aqueous solutions were studied by UV transmittance measurements, dynamic light scattering (DLS), transmission electron microscopy (TEM). The results showed that the N-hydroxymethyl acrylamide (HMAM) content in triblock copolymer affected the lower critical solution temperature (LCST) of the triblock copolymer aqueous solution. The copolymer self-assembled into core-shell micelles, with the thermoresponsive P(MEO2MA-co-HMAM) block and the hydrophilic PEG block as the shell, the hydrophobic PDEAEMA block as the core, in alkaline solution at room temperature. While in acidic media, when the temperature above the lower critical solution temperature (LCST) of the triblock copolymer aqueous solution, the copolymer self-assembled into P(MEO2MA-co-HMAM)-core micelles with mixed hydrophilic PEG and pH-responsive PDEAEMA coronas. Sol-gel transition temperature (Tsol-gel) for the triblock copolymer determined by vial inversion test further indicated that it is dependent on the concentration of the triblock copolymers and solution pH. Copolymer hydrogel loaded with bovine serum albumin (BSA) were used for the sustained release study. The results indicated that the hydrogel was a promising candidate for controlling protein drug delivery.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Scheme 2
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Gil ES, Hudson SM (2004) Stimuli-reponsive polymers and their bioconjugates. Prog Polym Sci 29:1173–1222

    Article  CAS  Google Scholar 

  2. Roy D, Cambre JN, Sumerlin BS (2010) Future perspectives and recent advances in stimuli-responsive materials. Prog Polym Sci 35:278–301

    Article  CAS  Google Scholar 

  3. Lee H, Pietrasik J, Sheiko SS, Matyjaszewski K (2010) Stimuli-responsive molecular brushes. Prog Polym Sci 35:24–44

    Article  CAS  Google Scholar 

  4. Chen T, Ferris R, Zhang JM, Ducker R, Zauscher S (2010) Stimulus-responsive polymer brushes on surfaces: transduction mechanisms and applications. Prog Polym Sci 35:94–112

    Article  Google Scholar 

  5. Lee H, Wu W, Oh JK, Mueller L, Sherwood G, Peteanu L, Kowalewski T, Matyjaszewski K (2007) Light-induced reversible formation of polymeric micelles. Angrew Chem 119:2505–2509

    Article  Google Scholar 

  6. Magnusson JP, Khan A, Pasparakis G, Saeed AO, Wang W, Alexander C (2008) Ion-sensitive “isothermal” responsive polymers prepared in water. J Am Chem Soc 130:10852–10853

    Article  CAS  PubMed  Google Scholar 

  7. Tai HY, Wang WX, Vemonden T, Heath F, Hennink WE, Alexander C, Shakesheff KM, Howdle SM (2009) Thermoresponsive and photocrosslinkable PEGMEMA-PPGMA-EGDMA copolymers from a one-step ATRP synthesis. Biomacrolecules 10:822–828

    Article  CAS  Google Scholar 

  8. Cheng C, Wei H, Shi BX, Cheng H, Li C, Gu ZW, Zhuo RX (2008) Biotinylated thermoresponsive micelle self-assembled from double-hydrophilic block copolymer for drug delivery and tumor target. Biomaterials 29:497–505

    Article  CAS  PubMed  Google Scholar 

  9. Lutz JF, Hoth A (2006) Preparation of ideal PEG analogues with a tunable thermosensitivity by controlled radical copolymerization of 2-(2-methoxyethoxy) ethyl methacrylate and oligo (ethylene glycol) methacrylate. Macromolecules 39:893–896

    Article  CAS  Google Scholar 

  10. Sun S, Wu P (2013) On the thermally reversible dynamic hydration behavior of oligo (ethylene glycol) methacrylate-based polymers in water. Macromolecules 46:236–246

    Article  CAS  Google Scholar 

  11. Cui Q, Wu F, Wang E (2011) Thermosensitive behavior of poly (ethylene glycol)-based block copolymer (PEG-b-PADMO) controlled via self-assembled microstructure. J Phys Chem B 115:5913–5922

    Article  CAS  PubMed  Google Scholar 

  12. Chang L, Liu J, Zhang J, Deng L, Dong A (2013) pH-sensitive nanoparticles prepared from amphiphilic and biodegradable methoxy poly (ethylene glycol)-block-(polycaprolactone -graft-poly (methacrylic acid)) for oral drug delivery. Polym Chem 4:1430–1438

    Article  CAS  Google Scholar 

  13. Seidi F, Heshmati P (2015) Synthesis of a PEG-PNIPAm thermosensitive dendritic copolymer and investigation of its self-association. Chin J Polym Sci 33:192–202

    Article  CAS  Google Scholar 

  14. Tenório-Neto ET, Guilherme MR, Lima-Tenório MK, Scariot DB, Nakamura CV, Rubira AF, Kunita MH (2015) Synthesis and characterization of a pH-responsive poly (ethylene glycol)-based hydrogel: acid degradation, equilibrium swelling, and absorption kinetic characteristics. Colloid Polym Sci 293:3611–3622

    Article  Google Scholar 

  15. Chiefari J, Chong YK, Ercole F, Krstina J, Jeffery J, Le TP, Rizzardo E, Thang SH (1998) Living free-radical polymerization by reversible addition-fragmentation chain transfer: the RAFT process. Macromolecules 31:5559–5562

    Article  CAS  Google Scholar 

  16. Pelet JM, Putnam D (2009) High molecular weight poly (methacrylic acid) with narrow polydispersity by RAFT polymerization. Macromolecules 42:1494–1499

    Article  CAS  Google Scholar 

  17. Sogabe A, McCormick CL (2009) Reversible addition-fragmentation chain transfer (RAFT) polymerization in an inverse microemulsion system: homopolymerization, chain extension, and block copolymerization. Macromolecules 42:5043–5052

    Article  CAS  Google Scholar 

  18. Lü S, Li B, Ni B, Sun Z, Liu M, Wang Q (2011) Thermoresponsive injectable hydrogel for three-dimensional cell culture: chondroitin sulfate bioconjugated with poly (N-isopropylacrylamide) synthesized by RAFT polymerization. Soft Matter 7:10763–10772

    Article  Google Scholar 

  19. Wu J, Sun X, Zhang R, Yuan S, W Z LQ, Yu Y (2016) RAFT preparation and self-assembly behavior of thermosensitive triblock PNIPAAm-b-PODA-b-PNIPAAm copolymers. Colloid Polym Sci 294:1989–1995

    Article  CAS  Google Scholar 

  20. Ahmad F, Zhou Y, Ling Z (2016) Systematic elucidation of interactive unfolding and corona formation of bovine serum albumin with cobalt ferrite nanoparticles. RSC Adv 6:35719–35730

    Article  CAS  Google Scholar 

  21. Lai JT, Filla D, Shea R (2002) Functional polymers from novel carboxyl-terminated trithiocarbonates as highly efficient RAFT agents. Macromolecules 35:6754–6756

    Article  CAS  Google Scholar 

  22. Guang NE, Liu SX, Li X, Tian L, Mao HG (2016) Micellization and gelation of the double Thermoresponsive ABC-type triblock copolymer synthesized by RAFT. Chin J Polym Sci 34:965–980

    Article  CAS  Google Scholar 

  23. Liu SX, Li X, Guang NE, Tian L, Mao HG (2016) Novel amphiphilic temperature responsive graft copolymers PCL-g-P(MEO2MA-co-OEGMA) via a combination of ROP and ATRP: synthesis, characterization, and sol-gel transition. J Polym Res 23:141

    Article  Google Scholar 

  24. Qiao ZY, Du FS, Zhang R, Liang DH, Li ZC (2010) Biocompatible thermoresponsive polymers with pendent oligo (ethylene glycol) chains and cyclic ortho ester groups. Macromolecules 43:6485–6494

    Article  CAS  Google Scholar 

  25. Jin N, Zhang H, Jin S, Dadmun MD, Zhao B (2012) Tuning of thermally induced sol-to-gel transitions of moderately concentrated aqueous solutions of doubly thermosensitive hydrophilic diblock copolymers poly (methoxytri (ethylene glycol) acrylate)-b-poly (ethoxydi (ethylene glycol) acrylate-co-acrylic acid). J Phys Chem B 116:3125–3137

    Article  CAS  PubMed  Google Scholar 

  26. Li X, Wang Y, Chen J, Wang Y, Ma J, Wu G (2014) Controlled release of protein from biodegradable multi-sensitive injectable poly (ether-urethane) hydrogel. Appl Mater Interfaces 6:3640–3647

    Article  CAS  Google Scholar 

  27. Chen J, Liu M, Gao C, Lü S, Zhang X, Liu Z (2013) Self-assembly behavior of pH-and thermo-responsive hydrophilic ABCBA-type pentablock copolymers synthesized by consecutive RAFT polymerization. RSC Adv 3:15085–15093

    Article  CAS  Google Scholar 

  28. Hwang MJ, Suh JM, Bae YH, Kim SW, Jeong B (2005) Caprolactonic poloxamer analog: PEG-PCL-PEG. Biomacromolecules 6:885–890

    Article  CAS  PubMed  Google Scholar 

  29. Hao W, Xia T, Shang Y, Xu S, Liu H (2016) Characterization and release kinetics of liposomes inserted by pH-responsive bola-polymer. Colloid Polym Sci 294:1107–1116

    Article  CAS  Google Scholar 

  30. Hussain H, Mya KY, He C (2008) Self-assembly of brush-like poly [poly (ethylene glycol) methyl ether methacrylate] synthesized via aqueous atom transfer radical polymerization. Langmuir 24:13279–13286

    Article  CAS  PubMed  Google Scholar 

  31. Wei H, Chen WQ, Chang C, Cheng C, Cheng SX, Zhang XZ, Zhuo RX (2008) Synthesis of star block, thermosensitive poly (L-lactide)-star block-poly(N-isopropylacrylamide-co- N-hydroxymethylacrylamide) copolymers and their self-assembled micelles for controlled release. J Phys Chem C 112:2888–2894

    Article  CAS  Google Scholar 

  32. Liu XM, Pramoda KP, Yang YY, Chow SY, He C (2004) Cholesteryl-grafted functional amphiphilic poly (N-isopropylacrylamide-co-N-hydroxylmethylacrylamide): synthesis, temperature-sensitivity, self-assembly and encapsulation of a hydrophobic agent. Biomaterials 25:2619–2628

    Article  CAS  PubMed  Google Scholar 

  33. Chaw CS, Chooi KW, Liu XM, Tan CW, Wang L, Yang YY (2004) Thermally responsive core-shell nanoparticles self-assembled from cholesteryl end-capped and grafted polyacrylamides: drug incorporation and in vitro release. Biomaterials 25:4297–4308

    Article  CAS  PubMed  Google Scholar 

  34. Ding H, Wu F, Huang Y, Zhang ZR, Nie Y (2006) Synthesis and characterization of temperature-responsive copolymer of PELGA modified poly (N-isopropylacrylamide). Polymer 47:1575–1583

    Article  CAS  Google Scholar 

  35. Zhang WQ, Shi LQ, Wu K, An YL (2005) Thermoresponsive micellization of poly(ethylene glycol)-b-poly(N-isopropylacrylamide) in water. Macromolecules 38:5743–5747

    Article  CAS  Google Scholar 

  36. Shi PF, Li QL, He X, Li ST, Sun PC, Zhang WQ (2014) A new strategy to synthesize temperature- and pH-sensitive multicompartment block copolymer nanoparticles by two macro-RAFT agents comediated dispersion polymerization. Macromolecules 47:7442–7452

    Article  CAS  Google Scholar 

  37. Zhang WQ, Shi LQ, Ma RJ, An YL, Xu YL, Wu K (2005) Micellization of thermo- and pH-responsive triblock copolymer of poly(ethylene glycol)-b-poly(4-vinylpyridine)-b- poly(N-isopropylacrylamide). Macromolecules 38:8850–8852

    Article  CAS  Google Scholar 

  38. Liu X, Luo S, Ye J, Wu C (2012) Effect of Ca2+ ion and temperature on association of thermally sensitive PAA-b-PNIPAM diblock chains in aqueous solutions. Macromolecules 45:4830–4838

    Article  CAS  Google Scholar 

  39. Peng B, Grishkewich N, Yao Z, Han X, Liu H, Tam KC (2012) Self-assembly behavior of thermoresponsive oligo (ethylene glycol) methacrylates random copolymer. ACS Macro Lett 1:632–635

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The research was supported by the National Natural Science Foundation of China (No. 21773147) and Natural Science Foundation of Shaanxi Province of China (No. 2016JM2003).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shouxin Liu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, S., Tian, L., Mao, H. et al. Micellization and sol-gel transition of novel thermo- and pH-responsive ABC triblock copolymer synthesized by RAFT. J Polym Res 25, 264 (2018). https://doi.org/10.1007/s10965-018-1658-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10965-018-1658-4

Keywords

Navigation