Skip to main content
Log in

Effects of weathering aging on mechanical and thermal properties of injection molded glass fiber reinforced polypropylene composites

  • ORIGINAL PAPER
  • Published:
Journal of Polymer Research Aims and scope Submit manuscript

Abstract

The effect of weathering aging on the degradation behavior of injection molded short glass fiber reinforced polypropylene composites (GFPP) is studied. First, the effect of outdoor weathering on mechanical properties of GFPP composite was investigated by tensile, flexural, and impact tests. Furthermore, to clarify the degradation behavior under natural weathering environments, differential scanning calorimetry (DSC), Fourier-transform infrared spectroscopy (FTIR), and scanning electron microscopy (SEM) measurements were carried out to analyze the structural and molecular changes during weathering aging. The results show that weathering aging has a significant influence on changes in mechanical properties, melting temperature and the degree of crystallinity of PG6N1 without added carbon black and UV absorbing agent. Those degradations not only occurred on the surface of GFPP but also proceeded to the inner matrix and interface. However, GFPP GWH42 with added carbon black and UV absorbing agent shows excellent weathering stability.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Scheme 1

Similar content being viewed by others

References

  1. Han C, Sahle-Demessie E, Zhao AQ, Wang J (2018) Environmental aging and degradation of multiwalled carbon nanotube reinforced polypropylene. Carbon 129:137–151

    Article  CAS  Google Scholar 

  2. de Dicastillo CL, del Mar Castro-López M, López-Vilariño JM, González-Rodríguez MV (2013) Immobilization of green tea extract on polypropylene films to control the antioxidant activity in food packaging. Food Res Int 53(1):522–528

    Article  Google Scholar 

  3. Ellis TS, D'Angelo JS (2003) Thermal and mechanical properties of a polypropylene nanocomposite. J Appl Polym Sci 90(6):1639–1647

    Article  CAS  Google Scholar 

  4. Lepot N, Van Bael M, Van den Rul H, D'Haen J, Peeters R, Franco D, Mullens J (2011) Influence of incorporation of ZnO nanoparticles and biaxial orientation on mechanical and oxygen barrier properties of polypropylene films for food packaging applications. J Appl Polym Sci 120(3):1616–1623

    Article  CAS  Google Scholar 

  5. Vassiliou A, Bikiaris D, Chrissafis K, Paraskevopoulos K, Stavrev S, Docoslis A (2008) Nanocomposites of isotactic polypropylene with carbon nanoparticles exhibiting enhanced stiffness, thermal stability and gas barrier properties. Compos Sci Technol 68(3–4):933–943

    Article  CAS  Google Scholar 

  6. Celina MC (2013) Review of polymer oxidation and its relationship with materials performance and lifetime prediction. Polym Degrad Stab 98(12):2419–2429

    Article  CAS  Google Scholar 

  7. Richaud E, Farcas F, Bartoloméo P, Fayolle B, Audouin L, Verdu J (2006) Effect of oxygen pressure on the oxidation kinetics of unstabilised polypropylene. Polym Degrad Stab 91(2):398–405

    Article  CAS  Google Scholar 

  8. Pickett JE, Coyle DJ (2013) Hydrolysis kinetics of condensation polymers under humidity aging conditions. Polym Degrad Stab 98(7):1311–1320

    Article  CAS  Google Scholar 

  9. Azuma Y, Takeda H, Watanabe S, Nakatani H (2009) Outdoor and accelerated weathering tests for polypropylene and polypropylene/talc composites: a comparative study of their weathering behavior. Polym Degrad Stab 94(12):2267–2274

    Article  CAS  Google Scholar 

  10. Al-Madfa H, Mohamed Z, Kassem M (1998) Weather ageing characterization of the mechanical properties of the low density polyethylene. Polym Degrad Stab 62(1):105–109

    Article  CAS  Google Scholar 

  11. Chien JC, Wang D (1975) Autoxidation of polyolefins. Absolute rate constants and effect of morphology. Macromolecules 8(6):920–928

    Article  CAS  Google Scholar 

  12. Audouin L, Gueguen V, Tcharkhtchi A, Verdu J (1995) “Close loop” mechanistic schemes for hydrocarbon polymer oxidation. J Polym Sci A Polym Chem 33(6):921–927

    Article  CAS  Google Scholar 

  13. Achimsky L, Audouin L, Verdu J, Rychly J, Matisova-Rychla L (1997) On a transition at 80 C in polypropylene oxidation kinetics. Polym Degrad Stab 58(3):283–289

    Article  CAS  Google Scholar 

  14. Hamid SH (2000) Handbook of polymer degradation. CRC Press,

  15. Tiemblo P, Gómez-Elvira J, Beltrán SG, Matisova-Rychla L, Rychly J (2002) Melting and α relaxation effects on the kinetics of polypropylene Thermooxidation in the range 80− 170° C. Macromolecules 35(15):5922–5926

    Article  CAS  Google Scholar 

  16. Du H, Wang W, Wang Q, Zhang Z, Sui S, Zhang Y (2010) Effects of pigments on the UV degradation of wood-flour/HDPE composites. J Appl Polym Sci 118(2):1068–1076

    CAS  Google Scholar 

  17. Li R (2000) Environmental degradation of wood–HDPE composite. Polym Degrad Stab 70(2):135–145

    Article  CAS  Google Scholar 

  18. Joseph P, Rabello MS, Mattoso L, Joseph K, Thomas S (2002) Environmental effects on the degradation behaviour of sisal fibre reinforced polypropylene composites. Compos Sci Technol 62(10–11):1357–1372

    Article  CAS  Google Scholar 

  19. Lundin T, Cramer SM, Falk RH, Felton C (2004) Accelerated weathering of natural fiber-filled polyethylene composites. J Mater Civ Eng 16(6):547–555

    Article  CAS  Google Scholar 

  20. Matuana LM, Kamdem DP (2002) Accelerated ultraviolet weathering of PVC/wood-flour composites. Polym Eng Sci 42(8):1657–1666

    Article  CAS  Google Scholar 

  21. Selden R, Nyström B, Långström R (2004) UV aging of poly (propylene)/wood-fiber composites. Polym Compos 25(5):543–553

    Article  CAS  Google Scholar 

  22. Stark NM (2006) Effect of weathering cycle and manufacturing method on performance of wood flour and high-density polyethylene composites. J Appl Polym Sci 100(4):3131–3140

    Article  CAS  Google Scholar 

  23. Stark NM, Matuana LM (2004) Surface chemistry and mechanical property changes of wood-flour/high-density-polyethylene composites after accelerated weathering. J Appl Polym Sci 94(6):2263–2273

    Article  CAS  Google Scholar 

  24. Weather Spark. Average weather in Ürümqi, China . https://www.weatherspark.com/y/111438/average-weather-in-%c3%9cr%c3%bcmqi-china-year-round

  25. Kong Y, Hay J (2003) The enthalpy of fusion and degree of crystallinity of polymers as measured by DSC. Eur Polym J 39(8):1721–1727

    Article  CAS  Google Scholar 

  26. Vyazovkin S, Sbirrazzuoli N (2006) Isoconversional kinetic analysis of thermally stimulated processes in polymers. Macromol Rapid Commun 27(18):1515–1532

    Article  CAS  Google Scholar 

  27. Brzozowska-Stanuch A, Rabiej S, Fabia J, Nowak J (2014) Changes in thermal properties of isotactic polypropylene with different additives during aging process. Polimery 59(4):302–307

    Article  CAS  Google Scholar 

  28. Yang X, Ding X (2006) Prediction of outdoor weathering performance of polypropylene filaments by accelerated weathering tests. Geotext Geomembr 24(2):103–109

    Article  Google Scholar 

  29. George G, Celina M, Vassallo A, Cole-Clarke P (1995) Real-time analysis of the thermal oxidation of polyolefins by FT-IR emission. Polym Degrad Stab 48(2):199–210

    Article  CAS  Google Scholar 

  30. Morlat S, Mailhot B, Gonzalez D, Gardette J-L (2004) Photo-oxidation of polypropylene/montmorillonite nanocomposites. 1. Influence of nanoclay and compatibilizing agent. Chem Mater 16(3):377–383

    Article  CAS  Google Scholar 

Download references

Acknowledgments

I would like to show my deepest gratitude to Dr. YAMANE Hideki, a respectable, responsible and resourceful scholar who has provided me with valuable guidance in every stage of the writing of this paper. Furthermore, all authors declare that: (i) no support, financial or otherwise, has been received from any organization that may have an interest in the submitted work; and (ii) there are no other relationships or activities that could appear to have influenced the submitted work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lichao Yu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yu, L., Yan, X. & Fortin, G. Effects of weathering aging on mechanical and thermal properties of injection molded glass fiber reinforced polypropylene composites. J Polym Res 25, 247 (2018). https://doi.org/10.1007/s10965-018-1642-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10965-018-1642-z

Keywords

Navigation