Skip to main content
Log in

Investigation of thermal-oil environmental ageing effect on mechanical and thermal behaviours of E-glass fibre/epoxy composites

  • ORIGINAL PAPER
  • Published:
Journal of Polymer Research Aims and scope Submit manuscript

Abstract

A comprehensive and comparative experimental study has been conducted to investigate the effect of thermal-oil ageing on mechanical, thermal and internal structural properties of E-glass fibre/epoxy composite materials. E-glass fibre/epoxy composite specimens were divided into 8 groups according to the certain experimental ageing temperatures. The temperature values were selected as −10, 25, 50, 80, 100, 120 and 140 °C, while the values of the ageing duration were selected as 24, 168, 360, 720 and 1080 h. Thermogravimetric Analysis (TGA) and Differential Thermal Analysis (DTA) tests were performed to determine the thermal properties, tensile tests were used to detect the mechanical properties and a Scanning Electron Microscope (SEM) was used to illustrate the changes in the internal structure of the composites. As a result of this work, unexpectedly no alteration was observed in the mechanical properties of the specimens aged at −10 °C; however, ageing at 120 and 140 °C reduced the maximum load carrying capacities (LCCs) of the specimens especially for further ageing exposure times. Furthermore, the thermal stability of the specimens aged at −10 °C increased with the increasing thermal ageing duration while, for the other thermal ageing temperatures, the thermal stability showed a decreasing trend as the thermal ageing exposure time increased.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21

Similar content being viewed by others

References

  1. Jahanian E, Zeinedini A (2018) Influence of drilling on mode II delamination of E-glass/epoxy laminated composites. Theor Appl Fract Mech 96:398–407. https://doi.org/10.1016/j.tafmec.2018.06.002

    Article  CAS  Google Scholar 

  2. Yilmaz C, Akalin C, Gunal I, Celik H, Buyuk M, Suleman A, Yildiz M (2018) A hybrid damage assessment for E-and S-glass reinforced laminated composite structures under in-plane shear loading. Compos Struct 186:347–354. https://doi.org/10.1016/j.compstruct.2017.12.023

    Article  Google Scholar 

  3. Hu H, Gao G, Hong S et al (2018) The influence of topology and morphology of fillers on the conductivity and mechanical properties of rubber composites. J Polym Res 25:87. https://doi.org/10.1007/s10965-018-1478-6

    Article  CAS  Google Scholar 

  4. Mohamed M, El-Maghraby A, El-Latif MA et al (2013) Fe-Ni alloy/polyamide 6 nanocomposites: effect of nanocrystalline metal particles on the mechanical and physical properties of the polymer. J Polym Res 20(6):137. https://doi.org/10.1007/s10965-013-0137-1

    Article  CAS  Google Scholar 

  5. Lou CW, Huang CL, Pan YJ et al (2016) Crystallization, mechanical, and electromagnetic properties of conductive polypropylene/SEBS composites. J Polym Res 23:84. https://doi.org/10.1007/s10965-016-0979-4

    Article  CAS  Google Scholar 

  6. Tsotsis TK (1995) Thermo-oxidative aging of composite materials. J Compos Mater 29(3):410–422. https://doi.org/10.1177/002199839502900307

    Article  CAS  Google Scholar 

  7. Zhang D, He M, He W et al (2017) Influence of thermo-oxidative ageing on the thermal and dynamical mechanical properties of long glass fibre-reinforced poly(butylene terephthalate) composites filled with dopo. Mater (Basel) 10:500. https://doi.org/10.3390/2Fma10050500

    Article  Google Scholar 

  8. Kruželák J, Sýkora R, Hudec I (2015) Influence of mixed sulfur/peroxide curing system and thermo-oxidative ageing on the properties of rubber magnetic composites. J Polym Res 22:636. https://doi.org/10.1007/s10965-014-0636-8

    Article  CAS  Google Scholar 

  9. Fan W, Li J, Zheng Y et al (2016) Influence of thermo-oxidative aging on the thermal conductivity of carbon fiber fabric reinforced epoxy composites. Polym Degrad Stab 123:162–169. https://doi.org/10.1016/j.polymdegradstab.2015.11.016

    Article  CAS  Google Scholar 

  10. Daily C, Barnard DJ, Jones R et al (2016) Dielectric and infrared inference of thermo-oxidative aging of a bismaleimide composite material. Compos Part B 101:167–175. https://doi.org/10.1016/j.compositesb.2016.06.004

    Article  CAS  Google Scholar 

  11. Barbosa AP, Fulco AP, Guerra ESS et al (2017) Accelerated aging effects on carbon fiber/epoxy composites. Compos Part B 110:298–306. https://doi.org/10.1016/j.compositesb.2016.11.004

    Article  CAS  Google Scholar 

  12. Buch X, Shanahan MER (2000) Thermal and thermo-oxidative ageing of an epoxy adhesive. Polym Degrad Stab 68:403–411. https://doi.org/10.1016/S0141-3910(00)00028-8

    Article  CAS  Google Scholar 

  13. Akderya T, Kemiklioglu U, Sayman O (2016) Effects of thermal ageing and impact loading on tensile properties of adhesively bonded fibre/epoxy composite joints. Compos Part B 95:117–122. https://doi.org/10.1016/j.compositesb.2016.03.073

    Article  CAS  Google Scholar 

  14. Rudzinski S, Häussler L, Harnisch C et al (2011) Glass fibre reinforced polyamide composites: thermal behaviour of sizings. Compos Part A 42:157–164. https://doi.org/10.1016/j.compositesa.2010.10.018

    Article  CAS  Google Scholar 

  15. Barjasteh E, Bosze EJ, Tsai YI et al (2009) Thermal aging of fiberglass/carbon-fiber hybrid composites. Compos A 40:2038–2045. https://doi.org/10.1016/j.compositesa.2009.09.015

    Article  CAS  Google Scholar 

  16. Boubakri A, Haddar N, Elleuch K et al (2011) Influence of thermal aging on tensile and creep behavior of thermoplastic polyurethane. CR Mecanique 339:666–673. https://doi.org/10.1016/j.crme.2011.07.003

    Article  CAS  Google Scholar 

  17. Karsli NG, Demirkol S, Yilmaz T (2016) Thermal aging and reinforcement type effects on the tribological, thermal, thermomechanical, physical and morphological properties of poly(ether ether ketone) composites. Compos Part B 88:253–263. https://doi.org/10.1016/j.compositesb.2015.11.013

    Article  CAS  Google Scholar 

  18. Kwon D, Shin P, Kim J et al (2017) Interfacial properties and thermal aging of glass Fiber/epoxy composites reinforced with SiC and SiO2 nanoparticles. Compos Part B 130:46–53. https://doi.org/10.1016/j.compositesb.2017.07.045

    Article  CAS  Google Scholar 

  19. Shaoquan W, Shangli D, Yub G et al (2017) Thermal ageing effects on mechanical properties and barely visible impact damage behavior of a carbon fiber reinforced bismaleimide composite. Mater Des 115:213–223. https://doi.org/10.1016/j.matdes.2016.11.062

    Article  CAS  Google Scholar 

  20. Scida D, Assarar M, Poilâne C et al (2013) Influence of hygrothermal ageing on the damage mechanisms of flax-fibre reinforced epoxy composite. Compos Part B 48:51–58. https://doi.org/10.1016/j.compositesb.2012.12.010

    Article  CAS  Google Scholar 

  21. Islam MS, Pickering KL, Foreman NJ (2010) Influence of hygrothermal ageing on the physico mechanical properties of alkali treated industrial hemp fibre reinforced polylactic acid composites. J Polym Environ 18:696–704. https://doi.org/10.1007/s10924-010-0225-9

    Article  CAS  Google Scholar 

  22. Anstice PD, Beaumont PWR (1983) Hygrothermal ageing and fracture of glass fibre--epoxy composites. J Mater Sci 18:3404–3408. https://doi.org/10.1007/BF00544167

    Article  CAS  Google Scholar 

  23. Valentin D, Paray F, Guetta B (1987) The hygrothermal behaviour of glass fibre reinforced Pa66 composites: a study of the effect of water absorption on their mechanical properties. J Mater Sci 22:46–56. https://doi.org/10.1007/BF01160550

    Article  CAS  Google Scholar 

  24. Hu Y, Lang AW, Li X et al (2014) Hygrothermal aging effects on fatigue of glass fiber/polydicyclopentadiene composites. Polym Degrad Stab 110:464–472. https://doi.org/10.1016/j.polymdegradstab.2014.10.018

    Article  CAS  Google Scholar 

  25. Rocha IBCM, Raijmaekers S, Nijssen RPL et al (2017) Hygrothermal ageing behaviour of a glass/epoxy composite used in wind turbine blades. Compos Struct 174:110–122. https://doi.org/10.1016/j.compstruct.2017.04.028

    Article  Google Scholar 

  26. Jiang X, Kolstein H, Bijlaard F et al (2014) Effects of hygrothermal aging on glass-fibre reinforced polymer laminates and adhesive of FRP composite bridge: moisture diffusion characteristics. Compos Part A: 57:49–58. https://doi.org/10.1016/j.compositesa.2013.11.002

    Article  CAS  Google Scholar 

  27. Foulca MP, Bergereta A, Ferrya L et al (2005) Study of hygrothermal ageing of glass fibre reinforced PET composites. Polym Degrad Stab 89:461–470. https://doi.org/10.1016/j.polymdegradstab.2005.01.025

    Article  CAS  Google Scholar 

  28. Berketis K, Tzetzis D (2009) Long-term water immersion ageing characteristics of GFRP composites. J Mater Sci 44(13):3578–3588. https://doi.org/10.1007/s10853-009-3485-9

    Article  CAS  Google Scholar 

  29. Ksouri I, De Almeida O, Haddar N (2017) Long term ageing of polyamide 6 and polyamide 6 reinforced with 30% of glass fibers: physicochemical, mechanical and morphological characterization. J Polym Res 24:133. https://doi.org/10.1007/s10965-017-1292-6

    Article  CAS  Google Scholar 

  30. Klasztorny M, Nycz DB, Romanowski RK et al (2017) Effects of operating temperatures and accelerated environmental ageing on the mechanical properties of a glassvinylester composite. Mech Compos Mater 53(3):335–350. https://doi.org/10.1007/s11029-017-9665-9

    Article  CAS  Google Scholar 

  31. Nicholas J, Mohamed M, Dhaliwal GS et al (2016) Effects of accelerated environmental aging on glass fiber reinforced thermoset polyurethane composites. Compos Part B 94:370–378. https://doi.org/10.1016/j.compositesb.2016.03.059

    Article  CAS  Google Scholar 

  32. Guzmán E, Cugnoni J, Gmür T (2014) Multi-factorial models of a carbon fibre/epoxy composite subjected to accelerated environmental ageing. Compos Struct 111:179–192. https://doi.org/10.1016/j.compstruct.2013.12.028

    Article  Google Scholar 

  33. Fitriah SN, Abdul Majid MS, Ridzuan MJM et al (2017) Influence of hydrothermal ageing on the compressive behaviour of glass fibre/epoxy composite pipes. Compos Struct 159:350–360. https://doi.org/10.1016/j.compstruct.2016.09.078

    Article  Google Scholar 

  34. HUNTSMAN - Advanced Materials - Selector guide for composite resin systems. http://www.huntsman.com/advanced_materials/Media%20Library/global/files/EUR_Composites%20-%20Composite%20Resin_Araldite_Epoxy_RTM.pdf Accessed 29 March 2018

  35. ASTM D3039 / D3039M-14, Standard Test Method for Tensile Properties of Polymer Matrix Composite Materials, ASTM International, West Conshohocken, PA, 2014, www.astm.org Accessed 29 March 2018

  36. FUCHS – Product Information – Renolin Therm 320 Heat transfer fluid. http://www.lukoilmarine.com/files/getfile/oil_grade_model/pdf/79/146003929992/ Accessed 29 March 2018

  37. Akderya T, Sayman O, Kemiklioğlu U et al (2018) A comparative study on effects of thermal fatigue caused by thermal-oil cycling on tensile properties of single lap composite joints bonded with different kinds of adhesives. J Adhes. https://doi.org/10.1080/00218464.2018.1440213

  38. Akderya T, Çevik M, Sayman O (2018) Influence of thermal ageing on tensile performance of E-glass fibre/epoxy composite joints bonded with a diverse set of adhesives. J Adhes. https://doi.org/10.1080/00218464.2018.1480371

  39. Liu X, Zhao J, Yang R et al (2018) Effect of lubricating oil on thermal aging of nitrile rubber. Polym Degrad Stab 151:136–143. https://doi.org/10.1016/j.polymdegradstab.2018.03.004

    Article  CAS  Google Scholar 

  40. DIN EN ISO 3104 - Petroleum products - Transparent and opaque liquids - Determination of kinematic viscosity and calculation of dynamic viscosity (ISO/DIS 3104:2017); German and English version pr EN ISO 3104:2017. https://www.din.de/en/getting-involved/standards-committees/nmp/drafts/wdc-beuth:din21:279196067 Accessed 29 March 2018

  41. DIN 51757 - Testing of mineral oils and related materials - Determination of density. https://www.din.de/en/getting-involved/standards-committees/nmp/standards/wdc-beuth:din21:136322149 Accessed 29 March 2018

  42. ASTM D1500–12, Standard Test Method for ASTM Color of Petroleum Products (ASTM Color Scale), ASTM International, West Conshohocken, PA, 2012, www.astm.org Accessed 29 March 2018

  43. DIN EN ISO 2592 - Petroleum and related products - Determination of flash and fire points - Cleveland open cup method (ISO/DIS 2592:2016); German and English version pr EN ISO 2592:2016 https://www.din.de/en/getting-involved/standards-committees/nmp/drafts/wdc-beuth:din21:247493569 Accessed 29 March 2018

  44. DIN ISO 3016 - Petroleum products - Determination of pour point (ISO 3016:1994). https://www.din.de/en/getting-involved/standards-committees/nmp/standards/wdc-beuth:din21:278983355 Accessed 29 March 2018

  45. Bowles KJ (2000) Thermal and mechanical durability of graphite fibre reinforced PMR-15 composites at elevated temperatures. Revol Mater Technol Econom 32

  46. Ksouri I, Haddar N (2018) Long term ageing of polyamide 6 and polyamide 6 reinforced with 30% of glass fibers: temperature effect. J Polym Res 25:153. https://doi.org/10.1007/s10965-018-1551-1

    Article  CAS  Google Scholar 

  47. Bennehalli B, Venkateshappa SC, Punyamurthy RD et al (2017) Influence of surface modification on the thermal stability and percentage of crystallinity of natural abaca fiber. Handbook of Composites from Renewable Materials, Scrivener Publishing, Beverly, Massachusetts. https://doi.org/10.1002/9781119441632.ch117/summary

  48. Milanese AC, Cioffi MOH, Voorwald HJC (2012) Thermal and mechanical behaviour of sisal/phenolic composites. Compos Part B 43:2843–2850. https://doi.org/10.1016/j.compositesb.2012.04.048

    Article  CAS  Google Scholar 

  49. Anbukarasi K, Kalaiselvam S (2015) Study of effect of fibre volume and dimension on mechanical, thermal, and water absorption behaviour of luffa reinforced epoxy composites. Mater Des 66:321–330. https://doi.org/10.1016/j.matdes.2014.10.078

    Article  CAS  Google Scholar 

  50. Monteiro SN, Calado V, Rodriguez RJS et al (2012) Thermogravimetric behavior of natural fibers reinforced polymer composites - an overview. Mater Sci Eng A 557:17–28. https://doi.org/10.1016/j.msea.2012.05.109

    Article  CAS  Google Scholar 

  51. Ramnath BV, Kokan SJ, Raja RN et al (2013) Evaluation of mechanical properties of abaca–jute–glass fibre reinforced epoxy composite. Mater Des 51:357–366. https://doi.org/10.1016/j.matdes.2013.03.102

    Article  CAS  Google Scholar 

  52. Elkhaoulani A, Arrakhiz FZ, Benmoussa K et al (2013) Mechanical and thermal properties of polymer composite based on natural fibers: Moroccan hemp fibers/polypropylene. Mater Des 49:203–208. https://doi.org/10.1016/j.matdes.2013.01.063

    Article  CAS  Google Scholar 

  53. Tanobe V, Sydenstricker THD, Munaro M et al (2005) A comprehensive characterization of chemically treated Brazilian sponge-gourds (Luffa cylindrica). Polym Test 24:474–482. https://doi.org/10.1016/j.polymertesting.2004.12.004

    Article  CAS  Google Scholar 

  54. Aji IS, Zainudin ES, Khalina A et al (2012) Thermal property determination of hybridized kenaf/PALF reinforced HDPE composite by thermogravimetric analysis. J Therm Anal Calorim 109:893–900. https://doi.org/10.1007/s10973-011-1807-z

    Article  CAS  Google Scholar 

  55. Mahmud CK, Haque Md A, Chowdhury AMS et al (2014) Preparation and characterization of polyester composites reinforced with bleached, Diospyros perigrina (Indian persimmon) treated and unbleached jute mat. J Adv Chem Eng 4:114. https://doi.org/10.4172/2090-4568.1000114

    Article  Google Scholar 

Download references

Acknowledgments

The authors would like to acknowledge the support of Izmir Katip Çelebi University Scientific Research Projects Coordinatorship under Grant no. 2017-TDR-FEBE-0030. All authors are truly grateful for the support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tarkan Akderya.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Akderya, T., Çevik, M. Investigation of thermal-oil environmental ageing effect on mechanical and thermal behaviours of E-glass fibre/epoxy composites. J Polym Res 25, 214 (2018). https://doi.org/10.1007/s10965-018-1615-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10965-018-1615-2

Keywords

Navigation