Skip to main content
Log in

Association behaviors of poly(N-vinylpyrrolidone)-grafted fullerenes in aqueous solution

  • ORIGINAL PAPER
  • Published:
Journal of Polymer Research Aims and scope Submit manuscript

Abstract

Poly(N-vinylpyrrolidone) (PVP)-grafted fullerenes (PVP-C60 and PVP-C70) were synthesized by iniferter polymerization in order to fabricate water-soluble fullerene containing micelles. PVP-C60 formed micelles with hydrodynamic diameters ranging from 15 to 33 nm. The solubilization of fullerene molecules into the core of the PVP-C60 micelles was also found to control the size of the micelles. By increasing the amount of added fullerene, we gradually increased the micelle size before drastically increasing it to that of 200 nm in hydrodynamic diameter. The drastic change occurred at a critical value of the added C60/PVP monomer ratio, almost independently of the molecular weight of PVP.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Scheme 2
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Prato M (1997) [60]fullerene chemistry for materials science applications. J Mater Chem 7:1097–1109

    Article  CAS  Google Scholar 

  2. Giacalone F, Martin N (2006) Fullerene polymers: synthesis and properties. Chem Rev 106:5136–5190

    Article  CAS  PubMed  Google Scholar 

  3. Friedman SH, DeCamp DL, Sijbesma RP, Srdanov G, Wudl F, Kenyon GL (1993) Inhibition of the HIV-1 protease by fullerene derivatives: model building studies and experimental verification. J Am Chem Soc 115:6506–6509

    Article  CAS  Google Scholar 

  4. Gharbi N, Pressac M, Hadchouel M, Szwarc H, Wilson SR, Moussa F (2005) [60]fullerene is a powerful antioxidant in vivo with no acute or subacute toxicity. Nano Lett 5:2578–2585

    Article  CAS  PubMed  Google Scholar 

  5. Lyon DY, Brunet L, Hinkal GW, Wiesner MR, Alvarez PJJ (2008) Antibacterial activity of fullerene water suspensions (nC60) is not due to ROS-mediated damage. Nano Lett 8:1539–1543

    Article  CAS  PubMed  Google Scholar 

  6. Constantin C, Neagu M, Ion RM (2010) Fullerene–porphyrin nanostructures in photodynamic therapy. Nanomedicine 5:307–317

    Article  CAS  PubMed  Google Scholar 

  7. Mousavi SZMD, Nafisi S, Maibach HI (2017) Fullerene nanoparticle in dermatological and cosmetic applications. Nanomedicine 13:1071–1087

    Article  CAS  PubMed  Google Scholar 

  8. Richardson CF, Schuster DI, Wilson SR (2000) Synthesis and characterization of water-soluble amino fullerene derivatives. Org Lett 2:1011–1014

    Article  CAS  PubMed  Google Scholar 

  9. Ravi P, Dai S, Wang C, Tam KC (2007) Fullerene containing polymers: a review on their synthesis and supramolecular behavior in solution. J Nanosci Nanotechnol 7:1176–1196

    Article  CAS  PubMed  Google Scholar 

  10. Kawauchi T, Kumaki J, Yashima E (2006) Nanosphere and nanonetwork formations of [60]fullerene-end-capped stereoregular poly(methyl methacrylate)s through stereocomplex formation combined with self-assembly of the fullerenes. J Am Chem Soc 128:10560–10567

    Article  CAS  PubMed  Google Scholar 

  11. Tan CH, Ravi P, Dai S, Tam KC (2004) Solvent-induced large compound vesicle of [60]fullerene containing poly(tert-butyl methacrylate). Langmuir 20:9901–9904

    Article  CAS  PubMed  Google Scholar 

  12. Ravi P, Dai S, Tan CH, Tam KC (2005) Self-assembly of alkali-soluble [60]fullerene containing poly(methacrylic acid) in aqueous solution. Macromolecules 38:993–939

    Article  CAS  Google Scholar 

  13. Zhou G, Harruna II, Zhou WL, Aicher WK, Geckeler KE (2007) Nanostructured thermosensitive polymers with radical scavenging ability. Chem Euro J 13:569–573

    Article  CAS  Google Scholar 

  14. Mouri E, Moriyama M (2017) Fabrication of structure-preserving monodisperse particles of PMMA-grafted fullerenes. Fibers Polym 18:2261–2268

    Article  CAS  Google Scholar 

  15. Dai S, Ravi P, Tan CH, Tam KC (2004) Self-assembly behavior of a stimuli-responsive water-soluble [60]fullerene-containing polymer. Langmuir 20:8569–8575

    Article  CAS  PubMed  Google Scholar 

  16. Okamura H, Terauchi T, Minoda M, Fukuda T, Komatsu K (1997) Synthesis of 1,4-dipolystyryldihydro [60]fullerenes by using 2,2,6,6-tetramethyl-1- polystyroxypiperidine as a radical source. Macromolecules 30:5279–5284

    Article  CAS  Google Scholar 

  17. Okamura H, Ide N, Minoda M, Komatsu K, Fukuda T (1998) Solubility and micellization behavior of C60 fullerenes with two well-defined polymer arms. Macromolecules 31:1859–1865

    Article  CAS  Google Scholar 

  18. Khairullin II, Chen Y-H, Hwang L-P (1997) Evidence for electron charge transfer in the polyvinylpyrrolidone-C60 system as seen from ESR spectra. Chem Phys Lett 275:1–6

    Article  CAS  Google Scholar 

  19. Sushko ML, Tenhu H, Klenin SI (2002) Static and dynamic light scattering study of strong intermolecular interactions in aqueous solutions of PVP/C60 complexes. Polymer 43:2769–2775

    Article  CAS  Google Scholar 

  20. Tőrők G, Lebedev VT, Cser L, Orlova DN, Sibilev AI, Zgonnik VN, Melenevskaya EY, Vinogradova LV, Sibileva MA (2004) Dynamics of complexes of poly(N-vinylpyrrolidone)-C60 in aqueous solution. Physica B 350:e415–e418

    Article  CAS  Google Scholar 

  21. Tarassova E, Aseyev V, Filippov A, Tenhu H (2007) Structure of poly(vinyl pyrrolidone)– C70 complexes in aqueous solutions. Polymer 48:4503–4510

    Article  CAS  Google Scholar 

  22. Souto GD, Pohlmann AR, Guterres SS (2015) Ultraviolet a irradiation increases the permeation of fullerenes into human and porcine skin from C60-poly(vinylpyrrolidone) aggregate dispersions. Skin Pharmacol Physiol 28:22–30

    Article  CAS  PubMed  Google Scholar 

  23. Oriana S, Aroua S, Sőllner JOB, Ma X-J, Iwamoto Y, Yamakoshi Y (2013) Water-soluble C60– and C70–PVP polymers for biomaterials with efficient 1O2 generation. Chem Commun 49:9302–9304

    Article  CAS  Google Scholar 

  24. Aroua S, Tiu EGV, Ayer M, Ishikawa T, Yamakoshi Y (2015) RAFT synthesis of poly(vinylpyrrolidone) amine and preparation of a water-soluble C60-PVP conjugate. Polym Chem 6:2616–2619

    Article  CAS  Google Scholar 

  25. Yamada S, Wang Z, Mouri E, Yoshinaga K (2009) Crystallization of titania ultra-fine particles from peroxotitanic acid in aqueous solution in the present of polymer and incorporation into poly(methyl methacylate) via dispersion in organic solvent. Colloid Polym Sci 287:139–146

    Article  CAS  Google Scholar 

  26. Noskov BA, Akentiev AV, Miller R (2002) Dynamic surface properties of poly(vinylpyrrolidone) solutions. J Colloid Interface Sci 255:417–424

    Article  CAS  PubMed  Google Scholar 

  27. Pecora R (ed) (1985) Dynamic light scattering: applications of photon correlation spectroscopy. Plenum Press, New York

    Google Scholar 

  28. Brandrup J, Immergut EH, Grulke EA, Abe A, Bloch DR (eds) (1999) Polymer Handbook. John Wiley & Sons, New Jersey

    Google Scholar 

  29. Mouri E, Moroi S (2018) Control of assembly size of poly (methacrylic acid)-grafted fullerenes in aqueous solution. J Polym Res. https://doi.org/10.1007/s10965-018-1575-6

  30. Tan CH, Ravi P, Dai S, Tam KC, Gan LH (2004) Solvent-induced large compound vesicle of [60]fullerene containing poly(tert-butylmethacrylate). Langmuir 20:9882–9884

    Article  CAS  PubMed  Google Scholar 

  31. Ravi P, Dai S, Hong KM, Tam KC, Gan LH (2005) Self-assembly of C60 containing poly(methyl methacrylate) in ethyl acetate/decalin mixtures solvent. Polymer 46:4714–4721

    Article  CAS  Google Scholar 

  32. Zhang L, Eisenberg A (1996) Multiple morphologies and characteristics of “crew-cut” micelle-like aggregates of polystyrene-b-poly(acrylic acid) diblock copolymers in aqueous solutions. J Am Chem Soc 118:3168–3181

    Article  CAS  Google Scholar 

  33. Moffitt M, Vali H, Eisenberg A (1998) Spherical assemblies of semiconductor nanoparticles in water-soluble block copolymer aggregates. Chem Mater 10:1021–1028

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We are greatly thankful to Prof. Kohji Yoshinaga (Professor Emeritus of Kyushu Institute of Technology) for his advice on the experiments, especially for the synthesis of the samples. We express our appreciation to Prof. Masato Yamamura (Kyushu Institute of Technology) for the help with the surface tension measurements. We also thank Dr. Tsuyoshi Takakura (Mitsubishi Chemical) for valuable comments regarding fullerenes. We are sincerely grateful to Dr. Suguru Motokucho (Nagasaki Univ.), Mr. Noboru Wakayama, and Mr. Masumi Kunisue (Kyushu Institute of Technology) for helping us with the GPC, TEM, and NMR, respectively. This work was financially supported by a grant-in-aid from Japan Society for the Promotion of Science (nos. 19750099 and 24850015).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Emiko Mouri.

Electronic supplementary material

ESM 1

(PDF 791 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mouri, E., Moroi, S. Association behaviors of poly(N-vinylpyrrolidone)-grafted fullerenes in aqueous solution. J Polym Res 25, 213 (2018). https://doi.org/10.1007/s10965-018-1604-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10965-018-1604-5

Keywords

Navigation