Skip to main content
Log in

Toughening high density polyethylene submitted to extreme ambient temperatures

  • ORIGINAL PAPER
  • Published:
Journal of Polymer Research Aims and scope Submit manuscript

Abstract

The use of polyethylene is limited due to its low impact strength among other mechanical properties at extreme ambient temperatures, for example at −46 °C and 66 °C. In this work, different polymer components, such as ultra-high molecular weight polyethylene (UHMWPE) and ethylene-vinyl acetate (EVA), were incorporated in high density polyethylene (HDPE) to test their ability to improve toughness of HDPE at extreme ambient temperatures. The polymer blends were processed by extrusion and injection molding and characterized by rotational rheometry, electron microscopy, thermal analysis, tensile, impact and dynamic mechanical tests. The results showed that low concentrations of EVA and UHMWPE in HDPE increased substantially the impact strength of HDPE at room temperature as well as in extreme ambient temperatures (−46 °C and 66 °C). This result indicates that these HDPE blends can be considered good candidates to replace pure HDPE in applications in which high values of toughness are required at extreme ambient temperatures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Sarkhel G, Choudhury A (2010) Dynamic vulcanization of polyethylene-based thermoplastic elastomer blends. J Appl Polym Sci 115:376–384

    Article  CAS  Google Scholar 

  2. MFMd S, Hassan A, Yahya R, Azzahari AD (2014) Effects of extrusion temperature on the rheological, dynamic mechanical and tensile properties of kenaf fiber/HDPE composites. Compos Part B Eng 58:259–266

    Article  Google Scholar 

  3. American Petroleum Institute. API Specification 5CT/ISO 11.960:2004 Annex I: Requirements for thread protectors design validation. USA, 2011

  4. Arrakhiz FZ, El Achaby M, Malha M, Bensalah MO, Fassi-Fehri O, Bouhfid R, Benmoussa K, Qaiss A (2013) Mechanical and thermal properties of natural fibers reinforced polymer composites: Doum/low density polyethylene. Mat Design 43:200–205

    Article  CAS  Google Scholar 

  5. Vasileiou AA, Kontopoulou M, Docoslis AA (2014) Noncovalent Compatibilization approach to improve the filler dispersion and properties of polyethylene/graphene composites. ACS App Mat Interfaces 6:1916–1925

    Article  CAS  Google Scholar 

  6. Rahmanian S, Suraya AR, Shazed MA, Zahari R, Zainudin ES (2014) Mechanical characterization of epoxy composite with multiscale reinforcements: carbon nanotubes and short carbon fibers. Mater Des 60:34–40

    Article  CAS  Google Scholar 

  7. Tai CM, Li RKY, Ng CN (2000) Impact behaviour of polypropylene/polyethylene blends. Polym Tests 19:143–154

    Article  CAS  Google Scholar 

  8. Madi NK (2013) Thermal and mechanical properties of injection molded recycled high density polyethylene blends with virgin isotactic polypropylene. Mater Des 46:435–441

    Article  CAS  Google Scholar 

  9. Jose S, Thomas S, Biju PK, Karger-Kocsis J (2013) Mechanical and dynamic mechanical properties of polyolefin blends: effect of blend ratio and copolymer monomer fraction on the compatibilisation efficiency of random copolymers. J Polym Res 20:303–316

    Article  Google Scholar 

  10. Zhang X, Yang H, Song Y, Zheng Q (2014) Influence of crosslinking on crystallization, rheological, and mechanical behaviors of high density polyethylene/ethylene-vinyl acetate copolymer blends. Polym Eng Sci 54:2848–2858

    Article  CAS  Google Scholar 

  11. Han T, Lu L, Ge C (2015) Development and properties of high density polyethylene (HDPE) and ethylene-vinyl acetate copolymer (EVA) blend antioxidant active packaging films containing quercetin. PackagTechnol Sci 28:415–423

    CAS  Google Scholar 

  12. Hosier IL, Vaughan AS, Swingler SG (2010) An investigation of the potential of ethylene vinyl acetate/polyethylene blends for use in recyclable high voltage cable insulation systems. J Mat Sci 45:2747–2759

    Article  CAS  Google Scholar 

  13. Sun Z, Ma Y, Xu Y, Chen X, Chen M, Yu J, Hu S, Zhang Z (2014) Effect of the particle size of expandable graphite on the thermal stability, flammability, and mechanical properties of high-density polyethylene/ethylene vinyl-acetate/expandable graphite composites. Polym Eng Sci 54:1162–1169

    Article  CAS  Google Scholar 

  14. Morais JA, Gadioli R, De Paoli MA (2016) Curaua fiber reinforced high-density polyethylene composites: effect of impact modifier and fiber loading. Polimeros 26:115–122

    Google Scholar 

  15. Jaggi HS, Satapathy BK, Ray AR (2014) Viscoelastic properties correlations to morphological and mechanical response of HDPE/UHMWPE blends. J Polym Res 21:482

    Article  Google Scholar 

  16. Lucas AA, Ambrósio JD, Otaguro H, Costa L, Agnelli JAM (2011) Abrasive wear of HDPE/UHMWPE blends. Wear 270:576–583

    Article  CAS  Google Scholar 

  17. Shen H, He L, Fan C, Xie B, Yang W, Yang M Improving the integration of HDPE/UHMWPE blends by high temperature melting and subsequent shear. Mat Lett 138:247–250

  18. Yang H, Hui L, Zhang J, Chen P, Li W (2017) Effect of entangled state of nascent UHMWPE on structural and mechanical properties of HDPE/UHMWPE blends. J Appl Polym Sci 134:44728

    Google Scholar 

  19. Chen Y, Li Y, Zou H, Liang M (2014) Effect of solid-state shear milling on structure and properties of HDPE/UHMWPE blends. J Appl Polym Sci 131:39916

    Google Scholar 

  20. Shen H, He L, Fan C, Xie B, Yang W, Yang M (2015) Effective dissolution of UHMWPE in HDPE improved by high temperature melting and subsequent shear. Polym Eng Sci 55:270–276

    Article  CAS  Google Scholar 

  21. Diop MF, Burghardt WR, Torkelson JM (2014) Well-mixed blends of HDPE and ultrahigh molecular weight polyethylene with major improvements in impact strength achieved via solid-state shear pulverization. Polymer 55:4948–4958

    Article  CAS  Google Scholar 

  22. Chen Y, Zou H, Liang M, Cao YJ (2014) Melting and crystallization behavior of partially miscible high density polyethylene/ethylene vinyl acetate copolymer (HDPE/EVA) blends. Thermochim Acta 586:1–8

    Article  CAS  Google Scholar 

  23. Alothman OY (2012) Processing and characterization of high density polyethylene/ethylene vinyl acetate blends with different VA contents. Adv Mat Sci Eng. doi:10.1155/2012/635693

    Google Scholar 

  24. Na B, Zhang Q, Fu Q, Zhang G, Shen K (2002) Super polyolefin blends achieved via dynamic packing injection molding: the morphology and mechanical properties of HDPE/EVA blends. Polymer 43:7367–7376

    Article  CAS  Google Scholar 

  25. Tomar N, Maiti SN (2007) Mechanical properties of PBT/ABAS blends. J Appl Polym Sci 104:1807–1817

    Article  CAS  Google Scholar 

  26. Palanivelu K, Sivaraman P, Reddy DM (2002) Studies on thermoplastic polyurethane toughened poly(butylene terephthalate) blends. Polym Testing 21:345–351

  27. Gupta AK, Purwar SN (1985) You have full text access to this content studies on binary and ternary blends of polypropylene with SEBS, PS, and HDPE. II Tensile and impact properties. J Appl Polym Sci 30:1799–1814

    Article  CAS  Google Scholar 

  28. Kakkar D, Maiti SN (2011) Effect of flexibility of ethylene vinyl acetate and crystallization of polypropylene on the mechanical properties of i-PP/EVA blends. J Appl Polym Sci 123:1905–1912

    Article  Google Scholar 

  29. Chen Y, Li Y, Zou H, Liang M (2014) Effect of solid-state shear milling on structure and properties of HDPE/UHMWPE blends. J Appl Polym Sci. doi:10.1002/app.39916

    Google Scholar 

  30. Maiti SN, Barman N, Gupta AK (2005) Mechanical properties of ABS/CSM rubber blends. Int Polym Mater 54:527–539

    Article  CAS  Google Scholar 

  31. John B, Varughese KT, Oommen Z, Pötschke P, Thomas S (2003) Dynamic mechanical behavior of high-density polyethylene/ethylene vinyl acetate copolymer blends: the effects of the blend ratio, reactive compatibilization, and dynamic vulcanization. J Appl Polym Sci 87:2083–2099

    Article  CAS  Google Scholar 

  32. Popli R, Glotin M, Mandelkern L, Benson RSJ (1984) Dynamic mechanical studies of α and β relaxations of polyethylenes. Polym Sci Polym Phys Ed 22:407–448

    Article  CAS  Google Scholar 

  33. Jaggi HS, Kumar S, Das D, Satapathy Ray AR (2014) Morphological correlations to mechanical performance of hydroxyapatite-filled HDPE/UHMWPE composites. J Appl Polym Sci. doi:10.1002/app.41251

    Google Scholar 

  34. Rajan AB, Upadhyaya P, Chand N, Kumar VJ (2013) Effect of nanoclay on the mechanical behavior of compatibilized ethylene vinyl acetate copolymer / high density polyethylene blends. J Mech Ind Eng 3:13–18

    Google Scholar 

  35. Boscoletto AB, Franco R, Scapin M, Tavan M (1997) An investigation on rheological and impact behaviour of high density and ultra high molecular weight polyethylene mixtures. Eur Polym J 33:97–105

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors acknowledge the financial support from CNPq, CAPES and FAPEMIG.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rodrigo L. Oréfice.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Savini, G., Oréfice, R.L. Toughening high density polyethylene submitted to extreme ambient temperatures. J Polym Res 24, 79 (2017). https://doi.org/10.1007/s10965-017-1243-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10965-017-1243-2

Keywords

Navigation