Skip to main content
Log in

Preparation and properties of bio-based polyurethane foams from natural rubber and polycaprolactone diol

  • ORIGINAL PAPER
  • Published:
Journal of Polymer Research Aims and scope Submit manuscript

Abstract

Bio-based polyurethane foam (PUF) was synthesized by a one-shot polymerization using hydroxyl telechelic natural rubber (HTNR) and polycaprolactone (PCL) diols as a soft segment. The effect of HTNR/PCL diol molar ratio (1/0, 1/0.5, 1/1 and 0.5/1) on the foam formation rate and physical and mechanical properties of the resulting PUF was investigated. The formation of urethane linkage and cross-linked structure were confirmed by FTIR analysis. The foams observed by scanning electron microscope revealed to have almost closed cells. The molar ratio of HTNR/PCL diol affected the foam formation rate, the average diameter of cell, the regularity of cell shape, the elongation at break and the compressive strength. The foam density slightly changed with this molar ratio whereas the specific tensile strength of all samples was in the same range. All PUFs showed relatively high compression set. The biodegradability was assessed according to a modified Sturm test. Low density polyethylene and sodium benzoate were used as a negative and positive control sample, respectively. PUF samples showed an induction time of 33 days in which the percentage of biodegradation was ~7–11 %. At the end of testing (60 days), the highest degradation (45.6 %) was found in the sample containing 1/0.5 of HTNR/PCL diol molar ratio.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Chan-Chan LH, Solis-Correa R, Vargas-Coronado RF, Cervantes-Uc JM, Cauich-Rodriguez JV, Quintana P, Bartolo-Perez P (2010) Degradation studies on segmented polyurethanes prepared with HMDI, PCL and different chain extenders. Acta Biomater 6:2035–2044

    Article  CAS  Google Scholar 

  2. Asefnejad A, Khorasani MT, Behnamghader A, Farsadzadeh B, Bonakdar S (2011) Manufacturing of biodegradable polyurethane scaffolds based on polycaprolactone using a phase separation method: physical properties and in vitro assay. Int J Nanomedicine 6:2375–2384

    Article  CAS  Google Scholar 

  3. Tsou CH, Lee HT, Tsai HA, Cheng HJ, Suen MC (2013) Synthesis and properties of biodegradable polycaprolactone/polyurethanes by using 2,6-pyridinedimethanol as a chain extender. Polym Degrad Stab 98:643–650

    Article  CAS  Google Scholar 

  4. Güney A, Hasirci N (2014) Properties and phase segregation of crosslinked PCL-based polyurethanes. J Appl Polym Sci 131:1–13

    Article  Google Scholar 

  5. Kébir N, Morandi G, Campistron I, Laguerre A, Pilard JF (2005) Synthesis of well defined amino telechelic cis-1,4-oligoisoprenes from carbonyl telechelic oligomers; first studies of their potentialities as polyurethane or polyurea materials precursors. Polymer 46:6844–6854

    Article  Google Scholar 

  6. Kebir N, Campistron I, Laguerre A, Pilard JF, Bunel C, Jouenne T (2007) Use of telechelic cis-1,4-polyisoprene cationomers in the synthesis of antibacterial ionic polyurethanes and copolyurethanes bearing ammonium groups. Biomaterials 28:4200–4208

    Article  CAS  Google Scholar 

  7. Kébir N, Campistron I, Laguerre A, Pilard JF, Bunel C, Couvercelle JP, Gondard C (2005) Use of hydroxytelechelic cis-1,4-polyisoprene (HTPI) in the synthesis of polyurethanes (PUs). Part 1. Influence of molecular weight and chemical modification of HTPI on the mechanical and thermal properties of PUs. Polymer 46:6869–6877

    Article  Google Scholar 

  8. Saetung A, Kaenhin L, Klinpituksa P, Rungvichaniwat A, Tulyapitak T, Munleh S, Campistron I, Pilard JF (2012) Synthesis, characteristic, and properties of waterborne polyurethane based on natural rubber. J Appl Polym Sci 124:2742–2752

    Article  CAS  Google Scholar 

  9. Burel F, Feldman A, Bunel C (2005) Hydrogenated hydroxy-terminated polyisoprene (HHTPI) based urethane network: network properties. Polymer 46:483–489

    Article  CAS  Google Scholar 

  10. Panwiriyarat W, Tanrattanakul V, Pilard JF, Khaokong C (2011) Synthesis and characterization of block copolymer from natural rubber, toluene-2,4-diisocyanate and poly(ε-caprolactone) diol - based polyurethane. Mater Sci Forum 695:316–319

    Article  CAS  Google Scholar 

  11. Panwiriyarat W, Tanrattanakul V, Pilard JF, Pasetto P, Khaokong C (2013) Physical and thermal properties of polyurethane from isophorone diisocyanate, natural rubber and poly(ε-caprolactone) with high NCO:OH content. Adv Sci Lett 19:1016–1020

    Article  CAS  Google Scholar 

  12. Panwiriyarat W, Tanrattanakul V, Pilard JF, Pasetto P, Khaokong C (2013) Effect of the diisocyanate structure and the molecular weight of diols on bio-based polyurethanes. J Appl Polym Sci 130:453–462

    Article  CAS  Google Scholar 

  13. Panwiriyarat W, Tanrattanakul V, Pilard JF, Pasetto P, Khaokong C (2013) Preparation and properties of bio-based polyurethane containing polycaprolactone and natural rubber. J Polym Environ 21:807–815

    Article  CAS  Google Scholar 

  14. Gorna K, Gogolewski S (2003) Preparation, degradation, and calcification of biodegradable polyurethane foams for bone graft substitutes. J Biomed Mater Res A 67:813–827

    Article  Google Scholar 

  15. Campanella A, Bonnaillie LM, Wool RP (2009) Polyurethane foams from soyoil-based polyols. J Appl Polym Sci 112:2567–2578

    Article  CAS  Google Scholar 

  16. Firdaus FE (2011) Chain extender on property relationships of polyurethane derived from soybean oil. World Acad Sci Eng Technol 5:175–178

    Google Scholar 

  17. Sin LC (2008) Rigid and flexible polyurethane foams production from palm oil-based polyol. Dissertation, University of malaya, Kuala lumpur, Malaysia

  18. Stirna U, Sevastyanova I, Misane M, Cabulis U, Beverteb I (2006) Structure and properties of polyurethane foams obtained from rapeseed oil polyols. Proc Est Acad Sci, Chem 55:101–110

    CAS  Google Scholar 

  19. Tan S, Abraham T, Ference D, Macosko CW (2011) Rigid polyurethane foams from a soybean oil-based polyol. Polymer 52:2840–2846

    Article  CAS  Google Scholar 

  20. Tanaka R, Hirose S, Hatakeyama H (2008) Preparation and characterization of polyurethane foams using a palm oil-based polyol. Bioresour Technol 99:3810–3816

    Article  CAS  Google Scholar 

  21. Wong CS, Badri KH (2012) Chemical analyses of palm kernel oil-based polyurethane prepolymer. Mater Sci Appl 3:78–86

    CAS  Google Scholar 

  22. Zhang L, Jeon HK, Malsam J, Herrington R, Macosko CW (2007) Substituting soybean oil-based polyol into polyurethane flexible foams. Polymer 48:6656–6667

    Article  CAS  Google Scholar 

  23. Saetung A, Rungvichaniwat A, Campistron I, Klinpituksa P, Laguerre A, Phinyocheep P, Doutres O, Pilard JF (2010) Preparation and physico-mechanical, thermal and acoustic properties of flexible polyurethane foams based on hydroxytelechelic natural rubber. J Appl Polym Sci 117:828–837

    Article  CAS  Google Scholar 

  24. Saetung A, Rungvichaniwat A, Campistron I, Klinpituksa P, Laguerre A, Phinyocheep P, Pilard JF (2010) Controlled degradation of natural rubber and modification of the obtained telechelic oligoisoprenes: preliminary study of their potentiality as polyurethane foam precursors. J Appl Polym Sci 117:1279–1289

    Article  CAS  Google Scholar 

  25. Tran TKN, Pilard JF, Pasetto P (2015) Recycling waste tires: generation of functional oligomers and description of their use in the synthesis of polyurethane foams. J Appl Polym Sci 132:1–11

    Article  Google Scholar 

  26. Rattanapan S, Pasetto P, Pilard JF, Tanrattanakul V (2014) Preparation and properties of bio-based polyurethane foams from polycaprolactone diol. Proceedings of the IUPAC World Polymer Congress, Chiang Mai, Thailand, pp. 81–83

    Google Scholar 

  27. Seo WJ, Park JH, Sung YT, Hwang DH, Kim WN, Lee HS (2004) Properties of water-blown rigid polyurethane foams with reactivity of raw materials. J Appl Polym Sci 93:2334–2342

    Article  CAS  Google Scholar 

  28. Piszczyk Ł, Strankowski M, Danowska M, Haponiuk JT, Gazda M (2012) Preparation and characterization of rigid polyurethane–polyglycerol nanocomposite foams. Eur Polym J 48:1726–1733

    Article  CAS  Google Scholar 

  29. Singh H, Sharma TP, Jain AK (2007) Reactivity of the raw materials and their effects on the structure and properties of rigid polyurethane foams. J Appl Polym Sci 106:1014–1023

    Article  CAS  Google Scholar 

  30. Organisation for economic co-operation and development (1993) OECD guidelines for testing of chemicals. CO2 evolution test. OECD 301 B, Paris, France.

  31. Leejarkpai T, Suwanmanee U, Rudeekit Y, Mungcharoen T (2011) Biodegradable kinetics of plastics under controlled composting conditions. Waste Manag 31:1153–1161

    Article  CAS  Google Scholar 

  32. Jurconi B, Feher L, Doca N, Vlase T, Lazăr C, Ţibru I, Ştefănescu M (2007) Evaluation of oily soil biodegradability by means of thermoanalytical methods. J Therm Anal Calorim 88:373–375

    Article  CAS  Google Scholar 

  33. Sadaka F, Campistron I, Laguerre A, Pilard JF (2012) Controlled chemical degradation of natural rubber using periodic acid: application for recycling waste Tyre rubber. Polym Degrad Stab 97:816–828

    Article  CAS  Google Scholar 

  34. Khanna R, Moore M (1999) Carbamic acid: molecular structure and IR spectra. Spectrochim Acta A 55:961–967

    Article  Google Scholar 

  35. Dworakowska S, Bogdał D, Zaccheria F, Ravasio N (2014) The role of catalysis in the synthesis of polyurethane foams based on renewable raw materials. Catal Today 223:148–156

    Article  CAS  Google Scholar 

  36. Askari F, Barikani M, Barmar M (2013) Study on thermal stability of polyurethane-urea based on polysiloxane and polycaprolactone diols. Korean J Chem Eng 30:2093–2099

    Article  CAS  Google Scholar 

  37. Zhang XD, Bertsch LM, Macosko CW (1998) Effect of amine additives on flexible, molded foam properties. Cell Polym 17:327–349

    CAS  Google Scholar 

  38. Watcharakul S, Umsakul K, Hodgson B, Chumeka W, Tanrattanakul V (2012) Biodegradation of a blended starch/natural rubber foam biopolymer and rubber gloves by Streptomyces coelicolor CH13. Electron J Biotechnol 15:1–13

    Google Scholar 

  39. Calil MR, Gaboardi F, Guedes CGF, Rosa DS (2006) Comparison of the biodegradation of poly(caprolactone), cellulose acetate and their blends by the Sturm test and selected cultured fungi. Polym Test 25:597–604

    Article  CAS  Google Scholar 

  40. Noda I, Rubingh DN (1992) Polymer Solutions, Blends, and Interfaces. Netherlands, Amsterdam

    Google Scholar 

  41. Bolbasov EN, Rybachuk M, Golovkin AS, Antonova LV, Shesterikov EV, Malchikhina AI, Novikov VA, Anissimov YG, Tverdokhlebov SI (2014) Surface modification of poly(L-lactide) and polycaprolactone bioresorbable polymers using RF plasma discharge with sputter deposition of a hydroxyapatite target. Mater Lett 132:281–284

    Article  CAS  Google Scholar 

  42. Shah Z, Krumholz L, Aktas D, Hasan F, Khattak M, Shah A (2013) Degradation of polyester polyurethane by a newly isolated soil bacterium, Bacillus Subtilis strain MZA-75. Biodegradation 24:865–877

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors would like to acknowledge the financial support from Rajamangala University of technology Srivijaya at Nakorn Sri Tammarat and Prince of Songkla University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Varaporn Tanrattanakul.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rattanapan, S., Pasetto, P., Pilard, JF. et al. Preparation and properties of bio-based polyurethane foams from natural rubber and polycaprolactone diol. J Polym Res 23, 182 (2016). https://doi.org/10.1007/s10965-016-1081-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10965-016-1081-7

Keywords

Navigation