Skip to main content
Log in

Temperature/pH dual responsive OPGMA based copolymeric hydrogels prepared by gamma radiation: an optimisation study

  • Published:
Journal of Polymer Research Aims and scope Submit manuscript

Abstract

The purpose of this study was to attain oligo(propylene glycol) methacrylate (OPGMA) based hydrogels for different biomedical applications. Since the volume phase transition temperature (VPTT) of poly(oligo(propylene glycol) methacrylate) (POPGMA) homopolymer was below room temperature, it was necessary to tune the thermoresponsiveness and the VPTT to higher temperatures; radical copolymerisation of OPGMA with more hydrophilic and/or pH responsive monomers was used to adjust these values. A series of copolymeric hydrogels with different ratios of OPGMA, 2-hydroxyethyl methacrylate (HEMA) and itaconic acid (IA) was synthesised by gamma radiation. The swelling properties were preliminarily investigated over a wide pH (2.2–9.0) and temperature (4–80 °C) ranges. Additional characterization of their structure and properties was conducted by Fourier transform infrared (FTIR) spectroscopy, scanning electron microscopy (SEM) and differential scanning calorimetry (DSC). The presented results revealed temperature/pH dual responsive P(OPGMA/IA) and P(OPGMA/HEMA/IA) copolymers with large diversity in swelling properties, as a result of the addition of OPGMA thermoresponsive units with a lower critical solution temperature (LCST) and IA pH responsive units. It was demonstrated that VPTT can be significantly shifted to higher (e.g. body) temperatures at higher pH values (pH ≥ 4) by increasing the IA content in the hydrogel composition. Due to the possibility of making dual responsive copolymers in the manner explained in this paper, OPGMA based hydrogels show potential for different biomedical applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Kishida A (2002) Hydrogels for biomedical and pharmaceutical applications. Polymeric biomaterials, Marcel Dekker, New York, Basel

    Google Scholar 

  2. Qiu Y, Park K (2001) Environment-sensitive hydrogels for drug delivery. Adv Drug Deliver Rev 53:321–339

    Article  CAS  Google Scholar 

  3. Kelland MA (2011) Tuning the thermoresponsive properties of hyperbranched poly(ester amide)s based on diisopropanolamine and cyclic dicarboxylic anhydrides. J Appl Polym Sci 121:2282–2290

    Article  CAS  Google Scholar 

  4. Hoffman AS, Stayton PS (2004) Bioconjugates of smart polymers and proteins: synthesis and applications. Macromol Symp 207:139–151

    Article  CAS  Google Scholar 

  5. Schmaljohann D (2006) Thermo- and pH-responsive polymers in drug delivery. Adv Drug Deliver Rev 58:1655–1670

    Article  CAS  Google Scholar 

  6. Park JS, Kataoka K (2006) Precise control of lower critical solution temperature of thermosensitive poly(2-isopropyl-2-oxazoline) via gradient copolymerization with 2-ethyl-2-oxazoline as a hydrophilic comonomer. Macromolecules 39:6622–6630

    Article  CAS  Google Scholar 

  7. Hu ZB, Chen YY, Wang CJ, Zheng YD, Li Y (1998) Polymer gels with engineered environmentally responsive surface patterns. Nature 393:149–152

    Article  CAS  Google Scholar 

  8. Kikuchi A, Okano T (2002) Intelligent thermoresponsive polymeric stationary phases for aqueous chromatography of biological compounds. Prog Polym Sci 27:1165–1193

    Article  CAS  Google Scholar 

  9. Smeets NMB, Bakaic E, Patenaude M, Hoare T (2014) Injectable poly(oligoethylene glycol methacrylate)-based hydrogels with tunable phase transition behaviours: physicochemical and biological responses. Acta Biomater 10:4143–4155

    Article  CAS  Google Scholar 

  10. Roy D, Brooks WLA, Sumerlin BS (2013) New directions in thermoresponsive polymers. Chem Soc Rev 42:7214–7243

    Article  CAS  Google Scholar 

  11. Safrany A, Beiler B, Vincze A (2010) Radiation polymerization and crosslinking: A viable alternative for synthesis of porous functional polymers. Radiat Phys Chem 79:462–466

    Article  CAS  Google Scholar 

  12. Rosiak JM (2002) Radiation formation of hydrogels for biomedical applications. International Atomic Agency Report, Vienna, Austria

    Google Scholar 

  13. Hennink WE, van Nostrum CF (2012) Novel crosslinking methods to design hydrogels. Adv Drug Deliver Rev 64:223–23

  14. Tomic SLJ, Micic MM, Filipovic JM, Suljovrujic EH (2010) Synthesis, characterization and controlled release of cephalexin drug from smart poly(2-hydroxyethyl methacrylate/poly(alkylene glycol)(meth)acrylates hydrogels. Chem Eng J 160:801–809

    Article  CAS  Google Scholar 

  15. Ottenbrite RM, Park K, Okano T (2010) Biomedical applications of hydrogels handbook. Springer, New York

    Book  Google Scholar 

  16. Wang J, Wu W (2005) Swelling behaviors, tensile properties and thermodynamic studies of water sorption of 2-hydroxyethyl methacrylate/epoxy methacrylate copolymeric hydrogels. Eur Polym J 41:1143–1151

    Article  CAS  Google Scholar 

  17. Pamfil D, Schick C, Vasile C (2014) New hydrogels based on substituted anhydride modified Collagen and 2-hydroxyethyl methacrylate. synthesis and characterization. Ind Eng Chem Res 53:11239–11248

    Article  CAS  Google Scholar 

  18. Lima LL, Zavaglia CAC, Bavaresco VP, Pinto E, Bartolo PJS, Gomes JMR (2014) Photopolymerization kinetics of 2-hydroxyethyl methacrylate (pHEMA) hydrogels, effect of different crosslinked agent. In: Bartolo PJS, al. e (eds) High value manufacturing: advanced research in virtual and rapid prototyping. Taylor & Francis Group, London

  19. Podkoscielna B, Bartnicki A, Gawdzik B (2012) New crosslinked hydrogels derivatives of 2-hydroxyethyl methacrylate: synthesis, modifications and properties. Express Polym Lett 6:759–771

    Article  CAS  Google Scholar 

  20. Garcia DM, Escobar JL, Noa Y, Bada N, Hernaez E, Katime I (2004) Timolol maleate release from pH-sensible poly(2-hydroxyethyl methacrylate-co-methacrylic acid) hydrogels. Eur Polym J 40:1683–1690

    Article  CAS  Google Scholar 

  21. Ende MTA, Peppas NA (1996) Transport of ionizable drugs and proteins in crosslinked poly(acrylic acid) and poly(acrylic acid-co-2-hydroxyethyl methacrylate) hydrogels. 1. Polymer characterization. J Appl Polym Sci 59:673–685

    Article  Google Scholar 

  22. Tomic SL, Micic MM, Dobic SN, Filipovic JM, Suljovrujic EH (2010) Smart poly(2-hydroxyethyl methacrylate/itaconic acid) hydrogels for biomedical application. Radiat Phys Chem 79:643–649

    Article  CAS  Google Scholar 

  23. Barcellos IO, Pires ATN, Katime I (2000) Physical properties of hydrogels of poly(2-hydroxyethyl methacrylate) and copolymers with mono-methyl itaconate synthesized by bulk and solution polymerization. Polym Int 49:825–830

    Article  CAS  Google Scholar 

  24. Tomic SL, Micic MM, Filipovic JM, Suljovrujic E (2005) Hydrogels based on 2-hydroxyethyl methacrylate obtained by gamma irradiation. Mater Sci Forum 494:199–203

    Article  CAS  Google Scholar 

  25. Han S, Hagiwara M, Ishizone T (2003) Synthesis of thermally sensitive water-soluble polymethacrylates by living anionic polymerizations of oligo(ethylene glycol) methyl ether methacrylates. Macromolecules 36:8312–8319

    Article  CAS  Google Scholar 

  26. Lutz JF (2008) Polymerization of oligo(ethylene glycol) (meth)acrylates: Toward new generations of smart biocompatible materials. J Polym Sci Pol Chem 46:3459–3470

    Article  CAS  Google Scholar 

  27. Lutz JF, Hoth A (2006) Preparation of ideal PEG analogues with a tunable thermosensitivity by controlled radical copolymerization of 2-(2-methoxyethoxy)ethyl methacrylate and oligo(ethylene glycol) methacrylate. Macromolecules 39:893–896

    Article  CAS  Google Scholar 

  28. Hua FJ, Jiang XG, Li DJ, Zhao B (2006) Well-defined thermosensitive, water-soluble polyacrylates and polystyrenics with short pendant oligo (ethylene glycol) groups synthesized by nitroxide-mediated radical polymerization. J Polym Sci Pol Chem 44:2454–2467

    Article  CAS  Google Scholar 

  29. Becer CR, Hahn S, Fijten MWM, Thijs HML, Hoogenboom R, Schubert US (2008) Libraries of methacrylic acid and oligo(ethylene glycol) methacrylate copolymers with LCST behavior. J Polym Sci Pol Chem 46:7138–7147

    Article  CAS  Google Scholar 

  30. Fournier D, Hoogenboom R, Thijs HML, Paulus RM, Schubert US (2007) Tunable pH- and temperature-sensitive copolymer libraries by reversible addition-fragmentation chain transfer copolymerizations of methacrylates. Macromolecules 40:915–920

    Article  CAS  Google Scholar 

  31. Qiao ZY, Du FS, Zhang R, Liang DH, Li ZC (2010) Biocompatible thermoresponsive polymers with pendent oligo(ethylene glycol) chains and cyclic ortho ester groups. Macromolecules 43:6485–6494

    Article  CAS  Google Scholar 

  32. Bebis K, Jones MW, Haddleton DM, Gibson MI (2011) Thermoresponsive behaviour of poly[(oligo(ethyleneglycol methacrylate)]s and their protein conjugates: importance of concentration and solvent system. Polym Chem-Uk 2:975–982

    Article  CAS  Google Scholar 

  33. Lutz JF, Weichenhan K, Akdemir O, Hoth A (2007) About the phase transitions in aqueous solutions of thermoresponsive copolymers and hydrogels based on 2-(2-methoxyethoxy)ethyl methacrylate and oligo(ethylene glycol) methacrylate. Macromolecules 40:2503–2508

    Article  CAS  Google Scholar 

  34. Wang N, Dong A, Radosz M, Shen YQ (2008) Thermoresponsive degradable poly(ethylene glycol) analogues. J Biomed Mater Res A 84A:148–157

    Article  CAS  Google Scholar 

  35. Sun ST, Wu PY (2013) On the thermally reversible dynamic hydration behavior of oligo(ethylene glycol) methacrylate-based polymers in water. Macromolecules 46:236–246

    Article  CAS  Google Scholar 

  36. Trmcic-Cvitas J, Hasan E, Ramstedt M, Li X, Cooper MA, Abell C, Huck WTS, Gautrot JE (2009) Biofunctionalized protein resistant oligo(ethylene glycol)-derived polymer brushes as selective immobilization and sensing platforms. Biomacromolecules 10:2885–2894

    Article  CAS  Google Scholar 

  37. Ali MM, Stover HDH (2004) Well-defined amphiphilic thermosensitive copolymers based on poly(ethylene glycol monomethacrylate) and methyl methacrylate prepared by atom transfer radical polymerization. Macromolecules 37:5219–5227

    Article  CAS  Google Scholar 

  38. Boyer C, Whittaker MR, Luzon M, Davis TP (2009) Design and synthesis of dual thermoresponsive and antifouling hybrid polymer/gold nanoparticles. Macromolecules 42:6917–6926

    Article  CAS  Google Scholar 

  39. Justin G, Guiseppi-Elie A (2009) Characterization of electroconductive blends of poly(HEMA-co-PEGMA-co-HMMA-co-SPMA) and poly(Py-co-PyBA). Biomacromolecules 10:2539–2549

    Article  CAS  Google Scholar 

  40. Li J, Zhang WD, Hu ZJ, Jiang XJ, Ngai T, Lo PC, Zhang W, Chen GJ (2013) Novel phthalocyanine and PEG-methacrylates based temperature-responsive polymers for targeted photodynamic therapy. Polym Chem-Uk 4:782–788

    Article  CAS  Google Scholar 

  41. Paris R, Quijada-Garrido I (2011) Synthesis and aggregation properties in water solution of comblike methacrylic polymers with oligo(propylene glycol)-block-oligo(ethylene glycol) as side chains. J Polym Sci Pol Chem 49:1928–1932

    Article  CAS  Google Scholar 

  42. Loh XJ (2013) Poly(DMAEMA-co-PPGMA): dual-responsive "reversible" micelles. J Appl Polym Sci 127:992–1000

    Article  CAS  Google Scholar 

  43. Tai HY, Howard D, Takae S, Wang WX, Vermonden T, Hennink WE, Stayton PS, Hoffman AS, Endruweit A, Alexander C, Howdle SM, Shakesheff KM (2009) Photo-cross-linked hydrogels from thermoresponsive PEGMEMA-PPGMA-EGDMA copolymers containing multiple methacrylate groups: mechanical property, swelling, protein release, and cytotoxicity. Biomacromolecules 10:2895–2903

    Article  CAS  Google Scholar 

  44. Shemper BS, Acar AE, Mathias LJ (2002) Synthesis of linear and starlike polymers from poly(propylene glycol) methacrylate using controlled radical polymerization. J Polym Sci Pol Chem 40:334–343

    Article  CAS  Google Scholar 

  45. Shemper BS, Mathias LJ (2004) Syntheses and characterization of statistical and block fluorinated copolymers with linear and star-like architectures via ATRP. Eur Polym J 40:651–665

    Article  CAS  Google Scholar 

  46. Smeets NMB, Bakaic E, Patenaude M, Hoare T (2014) Injectable and tunable poly(ethylene glycol) analogue hydrogels based on poly(oligoethylene glycol methacrylate). Chem Commun 50:3306–3309

    Article  CAS  Google Scholar 

  47. Tai HY, Wang WX, Vermonden T, Heath F, Hennink WE, Alexander C, Shakesheff KM, Howdle SM (2009) Thermoresponsive and photocrosslinkable PEGMEMA-PPGMA-EGDMA copolymers from a one-step ATRP synthesis. Biomacromolecules 10:822–828

    Article  CAS  Google Scholar 

  48. Cha C, Kim ES, Kim IW, Kong H (2011) Integrative deign of a poly(ethylene glycol)-poly(propylene glycol)-alginate hydrogel to control three dimensional biomineralization. Biomaterials 32:2695–2703

    Article  CAS  Google Scholar 

  49. Micic M, Miladinovic ZR, Suljovrujic E (2016) Tuning the thermoresponsive properties of poly(oligo(propylene glycol) methacrylate) hydrogels via gradient copolymerization with 2-hydroxyethyl methacrylate. Int J Polym Mater Po 65:18–27

    Article  CAS  Google Scholar 

  50. Suljovrujic E, Micic M (2015) Smart poly(oligo(propylene glycol) methacrylate) hydrogel prepared by gamma radiation. Nucl Instrum Meth B 342:206–214

    Article  CAS  Google Scholar 

  51. Constantin M, Cristea M, Ascenzi P, Fundueanu G (2011) Lower critical solution temperature versus volume phase transition temperature in thermoresponsive drug delivery systems. Express Polym Lett 5:839–848

    Article  CAS  Google Scholar 

  52. Liang X, Kozlovskaya V, Chen Y, Zavgorodnya O, Kharlampieva E (2012) Thermosensitive multilayer hydrogels of poly(N-vinylcaprolactam) as nanothin films and shaped capsules. Chem Mater 24:3707–3719

    Article  CAS  Google Scholar 

  53. Burmistrova A, Richter M, Uzum C, von Klitzing R (2011) Effect of cross-linker density of P(NIPAM-co-AAc) microgels at solid surfaces on the swelling/shrinking behaviour and the Young's modulus. Colloid Polym Sci 289:613–624

    Article  CAS  Google Scholar 

  54. Micic M, Stamenic D, Suljovrujic E (2012) Radiation-induced synthesis and swelling properties of p(2-hydroxyethyl methacrylate/itaconic acid/oligo (ethylene glycol) acrylate) terpolymeric hydrogels. Radiat Phys Chem 81:1451–1455

    Article  CAS  Google Scholar 

  55. Ferreira L, Vidal MM, Gil MH (2000) Evaluation of poly(2-hydroxyethyl methacrylate) gels as drug delivery systems at different pH values. Int J Pharm 194:169–180

    Article  CAS  Google Scholar 

  56. Kashi JTS, Erfan M, Watts DC (2007) Effect of water on HEMA conversion by FT-IR spectroscopy. J Dent Tehran Univ Med Sci 4:123–129

    Google Scholar 

  57. Schmidt P, Dybal J, Sturcova A (2009) ATR FTIR investigation of interactions and temperature transitions of poly(ethylene oxide), poly(propylene oxide) and ethylene oxide-propylene oxide-ethylene oxide tri-block copolymers in water media. Vib Spectrosc 50:218–225

    Article  CAS  Google Scholar 

  58. Micic M, Suljovrujic E (2013) Network parameters and biocompatibility of p(2-hydroxyethyl methacrylate/itaconic acid/oligo(ethylene glycol) acrylate) dual-responsive hydrogels. Eur Polym J 49:3223–3233

    Article  CAS  Google Scholar 

  59. Fundueanu G, Constantin M, Asmarandei I, Bucatariu S, Harabagiu V, Ascenzi P, Simionescu BC (2013) Poly(N-isopropylacrylamide-co-hydroxyethylacrylamide) thermosensitive microspheres: the size of microgels dictates the pulsatile release mechanism. Eur J Pharm Biopharm 85:614–623

    Article  CAS  Google Scholar 

Download references

Acknowledgment

This work has been supported by the Ministry of Education, Science and Technological Development of the Republic of Serbia (grants No. 172026 and No. III45005).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. Suljovrujic.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Miladinovic, Z.R., Micic, M. & Suljovrujic, E. Temperature/pH dual responsive OPGMA based copolymeric hydrogels prepared by gamma radiation: an optimisation study. J Polym Res 23, 77 (2016). https://doi.org/10.1007/s10965-016-0975-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10965-016-0975-8

Keywords

Navigation