Skip to main content
Log in

Effect of silicon carbide dispersion on the microwave absorbing properties of silicon carbide-epoxy composites in 2–40 GHz

  • Published:
Journal of Polymer Research Aims and scope Submit manuscript

Abstract

In this study, silicon carbide powders were manufactured successfully by the method of preheating combustion synthesis in nitrogen atmosphere where it was introduced into an epoxy resin to produce a microwave absorber. The structure of the silicon carbide was characterized by using X-ray diffraction (XRD) and scanning electron microscopy (SEM). Composite based on the various loadings of silicon carbide and epoxy resin specimens were prepared and the reflection losses of these composite samples were studied using the free space method. Based on the microwave measurements, microwave absorber specimens of silicon carbide with thermal plastic resin at frequencies between 2 and 18 and 18–40 GHz could be obtained from a matching thickness of 2.0 mm by controlling the content of silicon carbide.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Petrov VM, Gagulin VV (2001) J Inorg Mater 37:93

    Article  CAS  Google Scholar 

  2. Shi XL, Cao MS, Yuan J, Fang XY (2009) Appl Phys Lett 95:163108/1

    CAS  Google Scholar 

  3. Moučka R, Lopatin AV, Kazantseva NE, Vilčáková J, Sáha P (2007) J Mater Sci 42:9480

    Article  Google Scholar 

  4. Ting TH, Wu KH (2010) J Magn Magn Mater 322:2160

    Article  CAS  Google Scholar 

  5. Folgueras LDC, Rezende MC (2008) Mater Res 11:245

    Article  CAS  Google Scholar 

  6. Cao J, Fu WY, Yang HB, Yu QJ, Zhang YY (2009) J Phys Chem B 113:4642

    Article  CAS  Google Scholar 

  7. Tang NJ, Zhong W, Au C, Yang Y, Han MG, Lin KJ, Du YW (2008) J Phys Chem C 112:19316

    Article  CAS  Google Scholar 

  8. Stonier RA (1991) SAMPE J 27:9

    Google Scholar 

  9. Soto-Oviedo MA, Araújo OA, Faez R, Rezende MC, De Paoli MA (2006) Synth Met 156:1249

    Article  CAS  Google Scholar 

  10. Wen FS, Zuo WL, Yi HB, Wang N, Qiao L, Li FS (2009) Physica B 404:3567

    Article  CAS  Google Scholar 

  11. Qiao L, Han XH, Gao B, Wang JB, Wen FS, Li FS (2009) J Appl Phys 105:053911

    Article  Google Scholar 

  12. Zhen L, Gong YX, Jiang JT, Shao WZ (2008) J Appl Phys 104:0343121

    Article  Google Scholar 

  13. Chen YJ, Cao MS, Wang TH, Wan Q (2004) Appl Phys Lett 84:3367

    Article  CAS  Google Scholar 

  14. Abbas SM, Dixit AK, Chatterjee R, Goel TC (2005) Mater Sci Eng B 123:167

    Article  Google Scholar 

  15. Krstic VD (1992) J Am Ceram Soc 75:170

    Article  CAS  Google Scholar 

  16. Fissel A, Schroter B, Richter W (1995) Appl Phys Lett 66:3182

    Article  CAS  Google Scholar 

  17. Jin HB, Li JT, Cao MS, Agathopoulos S (2009) Powder Technol 196:229

    Article  CAS  Google Scholar 

  18. Mouchon E, Colomban P (1996) J Mater Sci 31:323

    Article  CAS  Google Scholar 

  19. Lim KS, Shevaleevskiy O (2008) Pure Appl Chem 80:2140

    Article  Google Scholar 

  20. Wang B, Zhao Q, Li SC, Wang BB (2003) Appl Surf Sci 217:314

    Article  CAS  Google Scholar 

  21. Meena RS, Bhattachrya S, Chatterjee R (2010) J Magn Magn Mater 322:2908

    Article  CAS  Google Scholar 

  22. Zhao DL, Lv Q, Shen ZM (2009) J Alloys Compd 480:634

    Article  CAS  Google Scholar 

  23. Kang YQ, Cao MS, Yuan J, Zhang L, Wen B, Fang XY (2010) J Alloys Compd 495:254

    Article  CAS  Google Scholar 

  24. Ghodgaonkar DK, Varadan VV, Varadan VK (1989) IEEE Trans Instrum Meas 37:789

    Article  Google Scholar 

  25. Knott EF, Shaeffer JF, Tuley MT (1993) Rader Cross Section. Artech House, New York

    Book  Google Scholar 

  26. Ting TH, Yu RP, Jau YN (2011) Mater Chem Phys 126:364

    Article  CAS  Google Scholar 

  27. Rao CV, Singh SK, Viswanathan B (2008) Indian J Chem 47:1619

    Google Scholar 

  28. Meng GW, Cui Z, Zhang LD, Phillipp F (2000) J Cryst Growth 209:801

    Article  CAS  Google Scholar 

  29. Su XL, Zhou WC, Xu J, Li ZM, Luo F, Zhu DM (2010) J Alloys Compd 492:L16

    Article  CAS  Google Scholar 

  30. Jin HB, Cao MS, Zhou W, Agathopoulos S (2010) Mater Res Bull 45:247

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tzu-Hao Ting.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ting, TH., Chiang, CC., Cheng, KF. et al. Effect of silicon carbide dispersion on the microwave absorbing properties of silicon carbide-epoxy composites in 2–40 GHz. J Polym Res 23, 82 (2016). https://doi.org/10.1007/s10965-016-0974-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10965-016-0974-9

Keywords

Navigation