Skip to main content
Log in

A superhydrophobic film with high water vapor transmission prepared from block copolymer micelle solution via VIPS method

  • Original Paper
  • Published:
Journal of Polymer Research Aims and scope Submit manuscript

Abstract

A superhydrophobic film with high water vapor transmission has been prepared via a vapor-induced phase separation process, where a block copolymer micellar solution was exposed to an organic non-solvent vapor atmosphere to evaporate solvent. After complete evaporation of the solvents, the obtained film displays 3-dimentional network with bi-continuous matrices and channels, both of which are at the scale of nanometers to micrometers. Interestingly, the matrix of the film consists of inter-connected sub-micrometer particles. The special hierarchical microstructure results in superhydrophobic and high adhesive properties of the film. Films with this kind of microstructure coating on non-planar substrates have been successfully prepared. The porosity of the film has been determined, and applications of the film in fields such as water vapor transmission and microfiltration separation have been carried out in order to indicate its potential.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Lee HJ, Jung B, Kang YS, Lee H (2004) Phase separation of polymer casting solution by nonsolvent vapor. J Membr Sci 245:103–112

    Article  CAS  Google Scholar 

  2. Khare VP, Greenberg AR, Krantz WB (2005) Vapor-induced phase separation-effect of the humid air exposure step on membrane morphology Part I. Insights from mathematical modeling. J Membr Sci 258:140–156

    Article  CAS  Google Scholar 

  3. Yip Y, McHugh AJ (2006) Modeling and simulation of nonsolvent vapor-induced phase separation. J Membr Sci 271:163–176

    Article  CAS  Google Scholar 

  4. Menut P, Su YS, Chinpa W, Pochat-Bohatier C, Deratani A, Wang DM, Huguet P, Kuo CY, Lai JY, Dupuy C (2008) A top surface liquid layer during membrane formation using vapor-induced phase separation (VIPS) - Evidence and mechanism of formation. J Membr Sci 310:278–288

    Article  CAS  Google Scholar 

  5. Peinemann KV, Abetz V, Simon PFW (2007) Asymmetric superstructure formed in a block copolymer via phase separation. Nat Mater 6:992–996

    Article  CAS  Google Scholar 

  6. Bouyer D, Werapun W, Pochat-Bohatier C, Deratani A (2010) Morphological properties of membranes fabricated by VIPS process using PEI/NMP/water system: SEM analysis and mass transfer modeling. J Membr Sci 349:97–112

    Article  CAS  Google Scholar 

  7. Tsai JT, Su YS, Wang DM, Kuo JL, Lai J, Deratani A (2010) Retainment of pore connectivity in membranes prepared with vapor-induced phase separation. J Membr Sci 362:360–373

    Article  CAS  Google Scholar 

  8. Rangou S, Buhr K, Filiz V, Clodt JI, Lademann B, Hahn J, Jung A, Abetz V (2014) Self-organized isoporous membranes with tailored pore sizes. J Membr Sci 45:266–275

    Article  Google Scholar 

  9. Zhao N, Xie QD, Weng LH, Wang SQ, Zhang XY, Xu J (2005) Superhydrophobic surface from vapor-induced phase separation of copolymer micellar solution. Macromolecules 38:8996–8999

    Article  CAS  Google Scholar 

  10. Zhao N, Xu J, Xie QD, Weng LH, Guo XL, Zhang XL, Shi LH (2005) Fabrication of biomimetic superhydrophobic coating with a micro-nano-binary structure. Macromol Rapid Commun 26:1075–1080

    Article  CAS  Google Scholar 

  11. Venault A, Chang Y, Wang DM, Bouyer D (2013) A review on polymer membranes and hydrogels prepared by vapor-induced phase separation process. Polymer Rev 53:568–626

    Article  CAS  Google Scholar 

  12. Zhao N, Zhang XY, Zhang XL, Xu J (2007) Simultaneous tuning of chemical composition and topography of copolymer surfaces: micelles as building blocks. ChemPhysChem 8:1108–1114

    Article  CAS  Google Scholar 

  13. Tan SX, Xie QD, Lu XY, Zhao N, Zhang XL, Xu J (2008) One step preparation of superhydrophobic polymeric surface with polystyrene under ambient atmosphere. J Colloid Interf Sci 322:1–5

    Article  CAS  Google Scholar 

  14. Yuan ZQ, Chen H, Tang JX, Zhao DJ (2009) A stable porous superhydrophobic high-density polyethylene surface prepared by adding ethanol in humid atmosphere. J Appl Polym Sci 113:1626–1632

    Article  CAS  Google Scholar 

  15. Erbil HY, Demirel AL, Avci Y, Mert O (2003) Transformation of a simple plastic into a superhydrophobic surface. Science 299:1377–1380

    Article  CAS  Google Scholar 

  16. Han JT, Xu XR, Cho K (2005) Diverse access to artificial superhydrophobic surfaces using block copolymers. Langmuir 21:6662–6665

    Article  CAS  Google Scholar 

  17. Yuan ZQ, Chen H, Tang JX, Chen X, Zhao DJ, Wang ZX (2007) Facile method to fabricate stable superhydrophobic polystyrene surface by adding ethanol. Surf Coat Technol 201:7138–7142

    Article  CAS  Google Scholar 

  18. Aruna ST, Binsy P, Richard E, Basu BJ (2012) Properties of phase separation method synthesized superhydrophobic polystyrene films. Appl Surf Sci 258:3202–3207

    Article  CAS  Google Scholar 

  19. Wang XY, Weiss RA (2012) A facile method for preparing sticky, hydrophobic polymer surfaces. Langmuir 28:3298–3305

    Article  CAS  Google Scholar 

  20. Xiong XP, Eckelt J, Wolf BA, Zhang ZJ, Zhang L (2006) Continuous spin fractionation and characterization by GPC for styrene-butadiene block copolymers. J Chromatogr A 1110:53–60

    Article  CAS  Google Scholar 

  21. Lodge TP (2003) Block copolymers: past successes and future challenges. Macromol Chem Phys 204:265–273

    Article  CAS  Google Scholar 

  22. Xiong XP, Zou WW, Lin MF (2010) Effect of molecular architecture on self-assembly of SBS block copolymers in selective solvent. J Funct Mater 41:1265–1267

    CAS  Google Scholar 

  23. Xiong XP (2011) Effect of molecular architecture on morphology SBS block copolymers in solution. Acta Polym Sin 1:76–80

    Article  Google Scholar 

  24. Li XM, Reinhoudt D, Crego-Calama M (2007) What do we need for a superhydrophobic surface? A review on the recent progress in the preparation of superhydrophobic surfaces. Chem Soc Rev 36:1350–1368

    Article  Google Scholar 

  25. Liu KS, Tian Y, Jiang L (2013) Bio-inspired superoleophobic and smart materials: design, fabrication, and application. Prog Mater Sci 58:503–564

    Article  CAS  Google Scholar 

  26. Xiong XP, Zou WW, Yu ZJ, Duan JJ, Liu XJ, Fan SH, Zhou H (2009) Microsphere pattern prepared by a “reverse” breath figure method. Macromolecules 42:9351–9356

    Article  CAS  Google Scholar 

  27. Bunz UHF (2006) Breath figures as a dynamic templating method for polymers and nanomaterials. Adv Mater 18:973–989

    Article  CAS  Google Scholar 

  28. Xiong XP, Lin MF, Zou WW (2011) Honeycomb structured porous films prepared by the method of breath figure: history and development. Curr Org Chem 15:3706–3718

    Article  CAS  Google Scholar 

  29. Kang DE, Byeon SJ, Heo MS, Moon BK, Kim I (2014) Fabrication of ordered honeycomb structures and microspheres using polystyrene-block-poly(tert-butyl acrylate) star polymers. J Polym Res 21:382

    Article  Google Scholar 

  30. He MJ, Chen XW, Dong XX (1999) Polymer physics, revised edition, Fudan University press, Shanghai, China, (Chapter 3)

  31. Feng L, Zhang YN, Xi JM, Zhu Y, Wang N, Xia F, Jiang L (2008) Petal effect: a superhydrophobic state with high adhesive force. Langmuir 24:4114–4119

    Article  CAS  Google Scholar 

  32. Bhushan B, Nosonovsky M (2010) The rose petal effect and the modes of superhydrophobicity. Phil Trans R Soc A 368:4713–4728

    Article  CAS  Google Scholar 

  33. Liu MJ, Zeng YM, Zhai J, Jiang L (2010) Bioinspired super-antiwetting interfaces with special liquid-solid adhesion. Acc Chem Res 43:368–377

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was financially supported by the Natural Science Foundation of Fujian Province of China (No. 2013 J01206), the Natural Science Foundation of China (No. 51273166) and the Fundamental Research Funds for the Central Universities of China (CXB2014014).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaopeng Xiong.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ke, Q., Liao, Y., Lin, M. et al. A superhydrophobic film with high water vapor transmission prepared from block copolymer micelle solution via VIPS method. J Polym Res 22, 213 (2015). https://doi.org/10.1007/s10965-015-0850-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10965-015-0850-z

Keywords

Navigation