Skip to main content
Log in

The dependence time of melting behavior on rheological aspects of disentangled polymer melt: a route to the heterogeneous melt

  • Original Paper
  • Published:
Journal of Polymer Research Aims and scope Submit manuscript

Abstract

To enhance the time scale for entanglement recovery, ultra high molecular weight polyethylene (UHMWPE) with a molecular weight of approximately 9.2 × 106 gmol−1 has been used. Rheological experiments were performed to monitor the melting kinetics of the disentangled melt prepared via solution casting. The successive frequency and strain sweep experiments showed that the processes of recovery of entanglements were quite clear in our experiments. It was observed that the entangled state influenced the border of the linear viscoelastic regime and the non-linear region. Complete re-entanglement time obtained by dynamics time-sweep experiment changed with the entanglement density and became unexpectedly longer in the disentangled sample. Meanwhile, the time-sweep experiments performed in the disentangled melt displayed that the gradual increasing of storage modulus in the initial has lagged behind and the time required for the modulus build up was relevant to the heating rate on melting. We suggested that an unusual behavior of melting kinetics of the disentangled sample caused the resultant heterogeneous melt having differences in local chain mobility, and hence an “immediate” loss in the disentangled state did not occur. Therefore, the level-off storage modulus on the onset of the following time-sweep experiment may be associated with the mixing of the distinguishable state of the heterogeneous distribution on melting.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Strobl G (2007) The physics of polymers: concepts for understanding their structures and behavior. Springer, Berlin

    Google Scholar 

  2. Strobl G (2006) Prog Polym Sci 31:398–442

    Article  CAS  Google Scholar 

  3. Iijima M, Strobl G (2000) Macromolecules 33:5204–5214

    Article  CAS  Google Scholar 

  4. Grasruck M, Strobl G (2003) Macromolecules 36:86–91

    Article  CAS  Google Scholar 

  5. Heck B, Strobl G (2004) Colloid Polym Sci 282:511–513

    Article  CAS  Google Scholar 

  6. Al-Hussein M, Strobl G (2002) Macromolecules 35:1672–1676

    Article  CAS  Google Scholar 

  7. Strobl G (2005) EPJE 18:295–309

    Article  CAS  Google Scholar 

  8. An H, Zhao B, Ma Z, Shao C, Wang X, Fang Y, Li L, Li Z (2007) Macromolecules 40:4740–4743

    Article  CAS  Google Scholar 

  9. An H, Li X, Geng Y, Wang Y, Wang X, Li L, Li Z, Yang C (2008) J Phys Chem B 112:12256–12262

    Article  CAS  Google Scholar 

  10. Geng Y, Wang G, Cong Y, Bai L, Li L, Yang C (2009) Macromolecules 42:4751–4757

    Article  CAS  Google Scholar 

  11. Ma Z, Fernandez-Ballester L, Cavallo D, Gough T, Peters GWM (2013) Macromolecules 46:2671–2680

    Article  CAS  Google Scholar 

  12. Liu D, Tian N, Cui K, Zhou W, Li X, Li L (2013) Macromolecules 46:3435–3443

    Article  CAS  Google Scholar 

  13. Cong Y, Liu H, Wang D, Zhao B, Yan T, Li L, Chen W, Zhong Z, Lin M, Chen H (2011) Macromolecules 44:5878–5882

    Article  CAS  Google Scholar 

  14. Li L, de Jeu WH (2005) Faraday Discuss 128:299–319

    Article  CAS  Google Scholar 

  15. Byelov D, Panine P, de Jeu WH (2007) Macromolecules 40:288–289

    Article  CAS  Google Scholar 

  16. Zhang Z, Yang X (2006) Polymer 47:5213–5219

    Article  CAS  Google Scholar 

  17. Liang T, Zhang Z, Yang X (2004) Polymer 45:1365–1371

    Article  CAS  Google Scholar 

  18. Li Z, Li L, Shen K, Yang M, Huang R (2005) Polymer 46:5358–5367

    Article  CAS  Google Scholar 

  19. Cavallo D, Azzurri F, Balzano L, Funari SS, Alfonso GC (2010) Macromolecules 43:9394–9400

    Article  CAS  Google Scholar 

  20. Cui K, Meng L, Ji Y, Li J, Zhu S, Li X, Tian N, Liu D, Li L (2014) Macromolecules 47:677–686

    Article  CAS  Google Scholar 

  21. Bastiaansen CWM, Meyer HEH, Lemstra PJ (1990) Polymer 31:1435–1440

    Article  CAS  Google Scholar 

  22. Lemstra PJ, Van Aerle N, Bastiaansen CWM (1987) Polym J 19:85–98

    Article  CAS  Google Scholar 

  23. Bartczak Z (2005) Macromolecules 38:7702–7713

    Article  CAS  Google Scholar 

  24. Bartczak Z (2005) Polymer 46:10339–10354

    Article  CAS  Google Scholar 

  25. Kotliar AM, Kumar R, Back RA (1990) J Polym Sci B Polym Phys 28:1033–1045

    Article  CAS  Google Scholar 

  26. Teng C, Gao Y, Wang X, Jiang W, Zhang C, Wang R, Zhou D, Xue G (2012) Macromolecules 45:6648–6651

    Article  CAS  Google Scholar 

  27. Liu CT, Morawetz H (1988) Macromolecules 21:515–518

    Article  CAS  Google Scholar 

  28. Robertson CG, Warren S, Plazek DJ, Roland CM (2004) Macromolecules 37:10018–10022

    Article  CAS  Google Scholar 

  29. Roy D, Roland CM (2013) Macromolecules 46:9403–9408

    Article  CAS  Google Scholar 

  30. Zhou D, Li L, Li Y, Zhang J, Xue G (2003) Macromolecules 36:4609–4613

    Article  CAS  Google Scholar 

  31. Wang X, Liu R, Wu M, Wang Z, Huang Y (2009) Polymer 50:5824–5827

    Article  CAS  Google Scholar 

  32. Sun Q, Fu Q, Xue G, Chen W (2001) Macromol Rapid Commun 22:1182–1185

    Article  CAS  Google Scholar 

  33. Wang X, Wang Z, Luo K, Huang Y (2011) Macromolecules 44:2844–2851

    Article  CAS  Google Scholar 

  34. Flory PJ (1989) Statistical mechanics of chain molecules. Oxford University Press, New York

    Google Scholar 

  35. Doi M, Edwards SF (1988) The theory of polymer dynamics. Oxford University Press, Oxford

    Google Scholar 

  36. Bent J, Hutchings LR, Richards RW, Gough T, Spares R, Coates PD, Grillo I, Harlen OG, Read DJ, Graham RS, Likhtman AE, Groves DJ, Nicholson TM, McLeish TCB (2003) Science 301:1691–1695

    Article  CAS  Google Scholar 

  37. Li N, Yang Q, Huang Y, Zhang Q, Zhao W (2014) J Polym Res 21:1–10

    Google Scholar 

  38. Ferry JD (1980) Viscoelastic properties of polymers. Wiley, New York

    Google Scholar 

  39. Zhang Z, Yang X, Yang M, Li T, Kong B (2004) Polymer 45:3021–3026

    Article  CAS  Google Scholar 

  40. Dealy JM, Tsang WKM (1981) J Appl Polym Sci 26:1149–1158

    Article  CAS  Google Scholar 

  41. Wunderlich B (2007) Thermochim Acta 461:4–13

    Article  CAS  Google Scholar 

  42. Wunderlich B (2003) Prog Polym Sci 28:383–450

    Article  CAS  Google Scholar 

  43. Höhne GW (2002) Polymer 43:4689–4698

    Article  Google Scholar 

  44. Höhne GW (2003) Thermochim Acta 403:25–36

    Article  Google Scholar 

  45. Yao Y, Graf R, Spiess HW, Rastogi S (2009) Macromol Rapid Commun 30:1123–1127

    Article  CAS  Google Scholar 

  46. Rastogi S, Yao Y, Lippits DR, Höhne GW, Graf R, Spiess HW, Lemstra PJ (2009) Macromol Rapid Commun 30:826–839

    Article  Google Scholar 

  47. Toda A, Hikosaka M, Yamada K (2002) Polymer 43:1667–1679

    Article  CAS  Google Scholar 

  48. Toda A, Kojima I, Hikosaka M (2008) Macromolecules 41:120–127

    Article  CAS  Google Scholar 

  49. Rastogi S, Lippits D, Peters G, Graf R, Yao Y, Spiess H (2005) Nat Mater 4:635–641

    Article  CAS  Google Scholar 

  50. Lippits DR, Rastogi S, Höhne GW (2006) Phys Rev Lett 96:218303

    Article  CAS  Google Scholar 

  51. Yamazaki S, Gu F, Watanabe K, Okada K, Toda A, Hikosaka M (2006) Polymer 47:6422–6428

    Article  CAS  Google Scholar 

  52. Yamazaki S, Hikosaka M, Toda A, Wataoka I, Gu F (2002) Polymer 43:6585–6593

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors are grateful to the financial support from the National Natural Science Foundation of China (51373109, 51003062, and 51121001), the Fundamental Research Funds for the Central Universities (2013SCU04A02), and the Innovation Team Program of Science & Technology Department of Sichuan Province (Grant 2013TD0013).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qi Yang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, N., Zhang, Q., Yang, Q. et al. The dependence time of melting behavior on rheological aspects of disentangled polymer melt: a route to the heterogeneous melt. J Polym Res 22, 55 (2015). https://doi.org/10.1007/s10965-015-0681-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10965-015-0681-y

Keywords

Navigation