Skip to main content
Log in

Solution behavior and associating structures of a salt-tolerant tetra-polymer containing an allyl-capped macromonomer

  • Original Paper
  • Published:
Journal of Polymer Research Aims and scope Submit manuscript

Abstract

A novel salt-tolerant macromonomer, allyl-capped octylphenoxy poly(ethylene oxide) (AOP) with the degree of polymerization equal to 20, was synthesized, and then a novel acrylamide(AM)-based tetra-polymer (PSAA) containing sodium 2-acrylamido-2-methylpropane sulphonate (NaAMPS), AOP, and vinyl biphenyl (VP) was synthesized by aqueous free-radical copolymerization. Static light scattering measurement shows that the weight-average molecular weight of PSAA is only 6.75 × 106 g/mol, but the z-average radius of gyration in 30 g/L NaCl is up to 189 nm. The apparent viscosities of aqueous PSAA solutions are very low at all polymer concentrations. However, for PSAA in 70 g/L NaCl, the critical association concentration (C p *) decreases from 0.4 g/L in water to 0.3 g/L, and the apparent viscosity increases sharply with an increase in polymer concentration and is higher surprisingly than that in water above C p *. The influences of NaCl and CaCl2 concentrations on solution viscosities of PSAA were measured, and the brine solutions display the strong salt-thickening effect in a wide range of salt concentration. This is different from hydrophobically associating polymers reported in the literature. Moreover, the thickening mechanisms of PSAA in water and brine solutions were investigated by a fluorescent probe and atomic force microscope (AFM).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Scheme 2
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. Sheng JJ (2011) Modern Chemical Enhance oil recovery. Elsevier Ltd, New York, In Polymer Flooding, p. 101–206

  2. Seright RS, Campbell AR, Mozley PS, Han P (2010) SPE J 15:341–348

    Article  CAS  Google Scholar 

  3. Rashid M, Blokhus AM, Skauge A (2010) J Appl Polym Sci 117:1551–1557

    Google Scholar 

  4. Rashid M, Blokhus AM, Skauge A (2011) J Appl Polym Sci 119:3623–3629

    Article  Google Scholar 

  5. Johnson KM, Fevola MJ, McCormick CL (2004) J Appl Polym Sci 92:647–657

    Article  CAS  Google Scholar 

  6. Ye L, Mao LJ, Huang RH (2001) J Appl Polym Sci 82:3552–3557

    Article  Google Scholar 

  7. Ye L, Luo KF, Huang RH (2000) Eur Polym J 36:1711–1715

    Article  CAS  Google Scholar 

  8. Ma J, Huang RH, Zhao L, Zhang X (2005) J Appl Polym Sci 97:316–321

    Article  CAS  Google Scholar 

  9. Ma JT, Cui P, Zhao L, Huang RH (2002) Eur Polym J 38:1627–1633

    Article  CAS  Google Scholar 

  10. Chen H, Ye ZB, Han LJ, Luo PY (2012) J Appl Polym Sci 123:2397–2405

    Article  CAS  Google Scholar 

  11. Wyatt NB, Gunther CM, Liberatore MW (2011) Polymer 52:2437–2444

    Article  CAS  Google Scholar 

  12. Tam KC, Tiu C (1990) Colloid Polym Sci 268:911–920

    Article  CAS  Google Scholar 

  13. Cai WS, Huang RH (2001) Eur Polym J 37:1553–1559

    Article  CAS  Google Scholar 

  14. Lei GL, Li LL, Nasr-El-Din HA (2011) SPE Reserv Eval Eng 14:120–128

    Article  CAS  Google Scholar 

  15. Wang WP, Tang JH, Peng XH, Hu ZD, Chen XG (2006) Sci China Ser B Chem 49:332–337

    Article  CAS  Google Scholar 

  16. Luo CX, Zhang LG, Hou JX, Guo MF, Qiao JL (2012) Acta Polymerica Sinica (3): 313–317

  17. Stahl GA, Schulz DN (1988) Water-Soluble Polymers for Petroleum Recovery. Plenum Press, New york

    Book  Google Scholar 

  18. Biggs S, Hill A, Selb J, Caudau F (1992) J Phys Chem 96:1505

    Article  CAS  Google Scholar 

  19. Zhong CR, Huang RH, Zhang X, Dai H (2007) J Appl Polym Sci 103:4027–4038

    Article  CAS  Google Scholar 

  20. Glenn K, Van Bommel A, Bhattacharya SC, Palepu RM (2005) Colloid Polym Sci 283:845–853

    Article  CAS  Google Scholar 

  21. Dutta P, Dey J, Ghosh G, Nayak RR (2009) Polymer 50:1516–1525

    Article  CAS  Google Scholar 

  22. Chen J, Jiang M, Zhang YX, Zhou H (1999) Macromolecules 32:4861–4866

    Article  CAS  Google Scholar 

  23. Winnik FM (1993) Chem Rev 93:587–614

    Article  CAS  Google Scholar 

  24. Szajdzinska-pietek E, Pinteala M, Schlick S (2004) Polymer 45:4113–4120

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We acknowledge the financial supports of the Specialized Research Fund for the Doctoral Program of Higher Education (contract grant number: 20135122110017) and Freedom Innovation Foundations of State Key Laboratory of Oil and Gas Reservoir Geology and Exploitation (contract grant number: 2014–192).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chuanrong Zhong.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhong, C., Zhang, H. & Feng, L. Solution behavior and associating structures of a salt-tolerant tetra-polymer containing an allyl-capped macromonomer. J Polym Res 21, 604 (2014). https://doi.org/10.1007/s10965-014-0604-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10965-014-0604-3

Keywords

Navigation