Skip to main content
Log in

A Simple Method to Find All Solutions to the Functional Equation of the Smoothing Transform

  • Published:
Journal of Theoretical Probability Aims and scope Submit manuscript

Abstract

Given a nonincreasing null sequence \(T = (T_j)_{j \geqslant 1}\) of nonnegative random variables satisfying some classical integrability assumptions and \({\mathbb {E}}(\sum _{j}T_{j}^{\alpha })=1\) for some \(\alpha >0\), we characterize the solutions of the well-known functional equation

$$\begin{aligned} f(t)\,=\,\textstyle {\mathbb {E}}\left( \prod _{j\geqslant 1}f(tT_{j})\right) ,\quad t\geqslant 0, \end{aligned}$$

related to the so-called smoothing transform and its min-type variant. In order to do so within the class of nonnegative and nonincreasing functions, we provide a new three-step method whose merits are that

  1. (i)

    it simplifies earlier approaches in some relevant aspects;

  2. (ii)

    it works under weaker, close to optimal conditions in the so-called boundary case when \({\mathbb {E}}\big (\sum _{j\geqslant 1}T_{j}^{\alpha }\log T_{j}\big )=0\);

  3. (iii)

    it can be expected to work as well in more general setups like random environment. At the end of this article, we also give a one-to-one correspondence between those solutions that are Laplace transforms and thus correspond to the fixed points of the smoothing transform and certain fractal random measures. The latter are defined on the boundary of a weighted tree related to an associated branching random walk.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Data Availability

This manuscript was produced with no additional data.

References

  1. Aïdékon, E.: Convergence in law of the minimum of a branching random walk. Ann. Probab. 41(3A), 1362–1426 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  2. Aldous, D.J., Bandyopadhyay, A.: A survey of max-type recursive distributional equations. Ann. Appl. Probab. 15(2), 1047–1110 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  3. Alsmeyer, G., Biggins, J.D., Meiners, M.: The functional equation of the smoothing transform. Ann. Probab. 40(5), 2069–2105 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  4. Alsmeyer, G., Iksanov, A.: A log-type moment result for perpetuities and its application to martingales in supercritical branching random walks. Electron. J. Probab. 14(10), 289–312 (2009)

    MATH  MathSciNet  Google Scholar 

  5. Biggins, J.D.: Martingale convergence in the branching random walk. J. Appl. Probab. 14(1), 25–37 (1977)

    Article  MATH  MathSciNet  Google Scholar 

  6. Biggins, J.D., Kyprianou, A.E.: Measure change in multitype branching. Adv. Appl. Probab. 36(2), 544–581 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  7. Biggins, J.D., Kyprianou, A.E.: Fixed points of the smoothing transform: the boundary case. Electron. J. Probab. 10, 609–631 (2005). (electronic)

    Article  MATH  MathSciNet  Google Scholar 

  8. Chen, X.: A necessary and sufficient condition for the nontrivial limit of the derivative martingale in a branching random walk. Adv. Appl. Probab. 47(3), 741–760 (2015)

    Article  MATH  MathSciNet  Google Scholar 

  9. Choquet, G., Deny, J.: Sur l’équation de convolution \(\mu =\mu \ast \). C. R. Acad. Sci. Paris 250, 799–801 (1960)

  10. Doney, R.A.: The Martin boundary and ratio limit theorems for killed random walks. J. Lond. Math. Soc. (2) 58(3), 761–768 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  11. Durrett, R., Liggett, T.M.: Fixed points of the smoothing transformation. Z. Wahrsch. Verw. Gebiete 64(3), 275–301 (1983)

    Article  MATH  MathSciNet  Google Scholar 

  12. Gut, A.: Stopped Random Walks. Limit Theorems and Applications. Springer Series in Operations Research and Financial Engineering, 2nd edn., p. 2009. Springer, New York (2009)

    Book  MATH  Google Scholar 

  13. Kahane, J.-P., Peyrière, J.: Sur certaines martingales de Benoit Mandelbrot. Adv. Math. 22(2), 131–145 (1976)

    Article  MATH  MathSciNet  Google Scholar 

  14. Kyprianou, A.E.: Martingale convergence and the stopped branching random walk. Probab. Theory Related Fields 116(3), 405–419 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  15. Liu, Q.: Fixed points of a generalized smoothing transformation and applications to the branching random walk. Adv. Appl. Probab. 30(1), 85–112 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  16. Lyons, R.: A simple path to Biggins’ martingale convergence for branching random walk. In: Classical and Modern Branching Processes. (Minneapolis, MN, 1994), IMA Vol. Math. Appl., vol. 84, pp. 217–221. Springer, New York (1997)

  17. Peyrière, J.: Turbulence et dimension de Hausdorff. C. R. Acad. Sci. Paris Sér. A 278, 567–569 (1974)

    MATH  MathSciNet  Google Scholar 

  18. Spitzer, F.: Principles of Random Walks. Graduate Texts in Mathematics, vol. 34, 2nd edn. Springer, New York (1976)

    Book  MATH  Google Scholar 

  19. Tanaka, H.: Time reversal of random walks in one-dimension. Tokyo J. Math. 12(1), 159–174 (1989)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Acknowledgements

Most of this work was done during a visit of the second author in March 2019 at the University of Münster. Financial support and kind hospitality are gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bastien Mallein.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Gerold Alsmeyer: Funded by the Deutsche Forschungsgemeinschaft (DFG) under Germany’s Excellence Strategy EXC 2044–390685587, Mathematics Münster: Dynamics–Geometry–Structure. Bastien Mallein: Partially funded by the ANR project 16-CE93-0003 (ANR MALIN)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Alsmeyer, G., Mallein, B. A Simple Method to Find All Solutions to the Functional Equation of the Smoothing Transform. J Theor Probab 35, 2569–2599 (2022). https://doi.org/10.1007/s10959-021-01151-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10959-021-01151-z

Keywords

Mathematics Subject Classification (2020)

Navigation