Skip to main content
Log in

Stochastic Two-Dimensional Navier–Stokes Equations on Time-Dependent Domains

  • Published:
Journal of Theoretical Probability Aims and scope Submit manuscript

Abstract

We establish the existence and uniqueness of solutions to stochastic Two-Dimensional Navier–Stokes equations in a time-dependent domain driven by Brownian motion. A martingale solution is constructed through domain transformation and appropriate finite-dimensional approximations on time-dependent spaces. The probabilistic strong solution follows from the pathwise uniqueness and the Yamada–Watanabe theorem. Because the state space of the solution changes with time, we need to deal with the various problems caused by the lack of appropriate chain rules/Itô’s formula, apart from the nonlinearity of the Navier–Stokes equation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Data Availability

Data sharing is not applicable to this article as no datasets were generated or analyzed during the current study.

References

  1. Bae, H.: Solvability of the free boundary value problem of the Navier–Stokes equations. Discrete Contin. Dyn. Syst. 29(3), 769–801 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  2. Bensoussan, A., Temam, R.: Equations stochastiques du type Navier–Stokes. J. Funct. Anal. 13, 195–222 (1973)

    Article  MATH  Google Scholar 

  3. Bock, D.N.: On the Navier–Stokes equations in noncylindrical domains. J. Differ. Equ. 25, 151–162 (1977)

    Article  MATH  MathSciNet  Google Scholar 

  4. Brzeźniak, Z., Hausenblas, E., Razafimandimby, P.A.: Stochastic reaction diffusion equations driven by jump processes. Potential Anal. 49, 131–201 (2018)

    Article  MATH  MathSciNet  Google Scholar 

  5. Chang, M.-H.: Large deviation for Navier–Stokes equations with small stochastic perturbation. Appl. Math. Comput. 76, 65–93 (1996)

    MATH  MathSciNet  Google Scholar 

  6. Filo, J., Zaušková, A.: 2D Navier–Stokes equations in a time dependent domain with Neumann type boundary conditions. J. Math. Fluid Mech. 12, 1–46 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  7. Flandoli, F., Maslowski, B.: Ergodicity of the 2D Navier–Stokes equation under random perturbations. Commun. Math. Phys. 171, 119–141 (1995)

    Article  MATH  Google Scholar 

  8. Flandoli, F., Gatarek, D.: Martingale and stationary solutions for stochastic Navier–Stokes equations. Probab. Theory Relat. Fields 102, 367–391 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  9. Fujita, H., Sauer, N.: On existence of weak solutions of the Navier–Stokes equations in regions with moving boundaries. J. Fac. Sci. Univ. Tokyo Sect. IA 17, 403–420 (1970)

    MATH  MathSciNet  Google Scholar 

  10. Hairer, M., Mattingly, J.: Ergodicity of the 2D Navier–Stokes equations with degenerate stochastic forcing. Ann. Math. 164, 993–1032 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  11. Hopf, E.: Über die Anfangswertaufgabe für die hydrodynamischen Grundgleichungen. Math. Nachr. 4, 213–231 (1951)

    Article  MATH  MathSciNet  Google Scholar 

  12. Inoue, A., Wakimoto, M.: On existence of solutions of the Navier–Stokes equation in a time dependent domain. J. Fac. Sci. Univ. Tokyo Sect. IA Math. 24, 303–319 (1977)

    MATH  MathSciNet  Google Scholar 

  13. Ladyzhenskaya, O.A.: The Mathematical Theory of Viscous Incompressible Flow. Gordon and Breach, New York (1969)

    MATH  Google Scholar 

  14. Leray, J.: Essai sur le mouvement d’un liquide visqueux emplissant l’espace. Acta Math. 63, 193–248 (1934)

    Article  MATH  MathSciNet  Google Scholar 

  15. Lions, J.L., Prodi, G.: Un thèoréme d’existence et unicité dans les équations de Navier-Stokes en dimension 2. C. R. Acad. Sci. Paris 248, 3519–3521 (1959)

    MATH  MathSciNet  Google Scholar 

  16. Liu, W., Röckner, M.: SPDEs in Hilbert space with locally monotone efficients. J. Funct. Anal. 259, 2902–2922 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  17. Menaldi, J.L., Sritharan, S.S.: Stochastic 2D Navier–Stokes equation. Appl. Math. Optim. 46, 31–53 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  18. Miyakawa, T., Teramoto, Y.: Existence and periodicity of weak solutions of the Navier–Stokes equations in a time dependent domain. Hiroshima Math. J. 12, 513–528 (1982)

    MATH  MathSciNet  Google Scholar 

  19. Nguyen, P., Tawri, K., Temam, R.: Nonlinear stochastic parabolic partial differential equations with a monotone operator of the Ladyzenskaya–Smagorinsky type, driven by a Lévy noise. J. Funct. Anal. 281, 109157 (2021). https://doi.org/10.1016/j.jfa.2021.109157

  20. Sritharan, S.S., Sundar, P.: Large deviations for the two-dimensional Navier–Stokes equations with multiplicative noise. Stoch. Process. Appl. 116, 1636–1659 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  21. Shibata, Y., Shimizu, S.: Free boundary problems for a viscous incompressible fluid. Commun. Pure Appl. Math. 31, 359–392 (1980)

    Google Scholar 

  22. Temam, R.: Navier–Stokes Equations: Theory and Numerical Analysis. North-Holland, Amsterdam (1979)

    MATH  Google Scholar 

  23. Walsh, J.B.: An introduction to stochastic partial differential equations. Écoled\(^{\prime }\)été de probabilités de Saint-Flour, XIV (1984), Lecture Notes in Math, vol. 1180. Springer, Berlin (1986)

  24. Wang, R., Zhai, J., Zhang, T.: A moderate deviation principle for 2D stochastic Navier–Stokes equations. J. Differ. Equ. 258(10), 3363–3390 (2015)

    Article  MATH  Google Scholar 

Download references

Acknowledgements

This work is partially supported by NSFC (Nos. 12131019, 11971456, 11721101) and School Start-up Fund (USTC) KY0010000036 and Fundamental Research Funds for the Central Universities WK3470000016.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jianliang Zhai.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, W., Zhai, J. & Zhang, T. Stochastic Two-Dimensional Navier–Stokes Equations on Time-Dependent Domains. J Theor Probab 35, 2916–2939 (2022). https://doi.org/10.1007/s10959-021-01150-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10959-021-01150-0

Keywords

Mathematics Subject Classification

Navigation