Skip to main content
Log in

Quenched Invariance Principles for Orthomartingale-Like Sequences

  • Published:
Journal of Theoretical Probability Aims and scope Submit manuscript

Abstract

In this paper, we study the central limit theorem and its functional form for random fields which are started not from their equilibrium, but rather under the measure conditioned by the past sigma field. The initial class considered is that of orthomartingales and then the result is extended to a more general class of random fields by approximating them, in some sense, with an orthomartingale. We construct an example which shows that there are orthomartingales which satisfy the CLT but not its quenched form. This example also clarifies the optimality of the moment conditions used for the validity of our results. Finally, by using the so-called orthomartingale-coboundary decomposition, we apply our results to linear and nonlinear random fields.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Argiris, G., Rosenblatt, J.: Forcing divergence when the supremum is not integrable. Positivity 10, 261–284 (2006)

    Article  MathSciNet  Google Scholar 

  2. Basu, A.K., Dorea, C.C.Y.: On functional central limit theorem for stationary martingale random fields. Acta Math. Acad. Sci. Hungar. 33, 307–316 (1979)

    Article  MathSciNet  Google Scholar 

  3. Billingsley, P.: Convergence of Probability Measures. Wiley, New York (1999)

    Book  Google Scholar 

  4. Billingsley, P.: Probability and Measures. Wiley Series in Probability and Statistics, 3rd edn. Wiley, New York (1995)

    MATH  Google Scholar 

  5. Bickel, P.J., Wichura, M.J.: Convergence criteria for multiparameter stochastic processes and some applications. Ann. Math. Stat. 42, 1656–1670 (1971)

    Article  MathSciNet  Google Scholar 

  6. Burkholder, D.L.: Distribution function inequalities for martingales. Ann. Probab. 1, 19–42 (1973)

    Article  MathSciNet  Google Scholar 

  7. Borodin, A.N., Ibragimov, I.A.: Limit theorems for functionals of random walks. Trudy Mat. Inst. Steklov., 195 (Proc. Steklov Inst. Math. (1995)) 195(2) (1994)

  8. Cairoli, R.: Un théorème de convergence pour martingales à indices multiples. C. R. Acad. Sci. Paris Sér. A-B 269, A587–A589 (1969)

    MathSciNet  MATH  Google Scholar 

  9. Cuny, C., Peligrad, M.: Central limit theorem started at a point for stationary processes and additive functional of reversible Markov Chains. J. Theor. Probab. 25, 171–188 (2012)

    Article  MathSciNet  Google Scholar 

  10. Cuny, C., Merlevède, F.: On martingale approximations and the quenched weak invariance principle. Ann. Probab. 42, 760–793 (2014)

    Article  MathSciNet  Google Scholar 

  11. Cuny, C., Dedecker J., Volný, D.: A functional central limit theorem for fields of commuting transformations via martingale approximation, Zapiski Nauchnyh Seminarov POMI 441.C. Part 22 239–263 and J. Math. Sci. 2016, 219 765–781 (2015)

  12. de la Peña, V., Giné, E.: Decoupling. From Dependence to Independence. Randomly Stopped Processes. U-Statistics and Processes. Martingales and Beyond. Probability and Its Applications (New York). Springer, New York (1999)

    MATH  Google Scholar 

  13. Derriennic, Y., Lin, M.: The central limit theorem for Markov chains with normal transition operators started at a point. Probab. Theory Relat. Fields 119, 508–528 (2001)

    Article  MathSciNet  Google Scholar 

  14. Eisner, F., Farkas, B., Haase, M.: Operator Theoretic Aspects of Ergodic Theory. Graduate Texts in Mathematics 272. Springer, Berlin (2015)

    Book  Google Scholar 

  15. El Machkouri, M., Giraudo, D.: Orthomartingale-coboundary decomposition for stationary random fields. Stoch. Dyn. 16, 1650017 (2016)

    Article  MathSciNet  Google Scholar 

  16. El Machkouri, M., Volný, D., Wu, W.B.: A central limit theorem for stationary random fields. Stoch. Process. Appl. 123, 1–14 (2013)

    Article  MathSciNet  Google Scholar 

  17. Gänssler, P., Häusler, E.: Remarks on the functional central limit theorem for martingales. Z. Wahrscheinlichkeitstheorie verw. Gebiete 50, 237–243 (1979)

    Article  MathSciNet  Google Scholar 

  18. Gänssler, P., Häusler, E.: On martingale central limit theory. In: Eberlein, E., Taqqu, M. (eds.) Dependence in Probability and Statistics. In: Progress in Probability and Statistics, vol. 11. Birkhauser, pp. 303–335 (1986)

  19. Giné, E., Latala, R., Zinn, J.: Exponential and moment inequalities for U-statistics. In: Giné, E., Mason, D., Wellner, J.A. (eds.) High Dimensional Probability II. Progress Probab. Vol. 47, pp. 13–38. Birkhäuser, Boston (2000)

  20. Giraudo, D.: Invariance principle via orthomartingale approximation. Stoch. Dyn. 18(06), 1850043 (2018)

    Article  MathSciNet  Google Scholar 

  21. Gordin, M.I.: Martingale-coboundary representation for a class of stationary random fields. Zap. Nauchn. Sem. S.-Peterburg. Otdel. Mat. Inst. Steklov. (POMI) 364, Veroyatnostn i Statistika. 14.2, 88–108, 236 (2009)

  22. Gordin, M.I.: Martingale-coboundary representation for a class of stationary random fields. J. Math. Sci. 163, 363–374 (2009)

    Article  MathSciNet  Google Scholar 

  23. Katznelson, Y., Weiss, B.: Commuting measure-preserving transformations. Israel J. Math. 12(1972), 161–173 (1972)

    Article  MathSciNet  Google Scholar 

  24. Khoshnevisan, D.: Multiparameter Processes. An Introduction to Random Fields. Springer Monographs in Mathematics. Springer, New York (2002)

    MATH  Google Scholar 

  25. Krengel, U.: Ergodic Theorems. De Gruyter Studies in Mathematics. De Gruyter, Berlin (1985)

    Book  Google Scholar 

  26. Milnes, H.W.: Convexity of Orlicz spaces. Pac. J. Math. 7(3), 1451–1483 (1957)

    Article  MathSciNet  Google Scholar 

  27. Ouchti, L., Volný, D.: A conditional CLT which fails for ergodic components. J. Theor. Probab. 21, 687–703 (2008)

    Article  MathSciNet  Google Scholar 

  28. Peligrad, M.: Quenched Invariance Principles via Martingale Approximation; in Asymptotic Laws and Methods in Stochastics. The Volume in Honour of Miklos Csörgő work. Springer in the Fields Institute Communications Series, pp. 121–137. Springer, New York (2015)

    Google Scholar 

  29. Peligrad, M., Zhang, Na: On the normal approximation for random fields via martingale methods. Stoch. Process. Appl. 128, 1333–1346 (2018)

    Article  MathSciNet  Google Scholar 

  30. Peligrad, M.: Zhang, N: Martingale approximations for random fields. Electron. Commun. Probab. 23(28), 1–9 (2018b)

    Google Scholar 

  31. Volný, D.: A central limit theorem for fields of martingale differences. C. R. Math. Acad. Sci. Paris 353, 1159–1163 (2015)

    Article  MathSciNet  Google Scholar 

  32. Volný, D.: Martingale-coboundary representation for stationary random field. Stoch. Dyn. 18(02), 1850011 (2018)

    Article  MathSciNet  Google Scholar 

  33. Volný, D.: On limit theorems for fields of martingale differences. Stoch. Process Appl. 129, 841–859 (2019)

    Article  MathSciNet  Google Scholar 

  34. Volný, D., Wang, Y.: An invariance principle for stationary random fields under Hannan’s condition. Stoch. Process. Appl. 124, 4012–4029 (2014)

    Article  MathSciNet  Google Scholar 

  35. Volný, D., Woodroofe, M.: An Example of Non-quenched Convergence in the Conditional Central Limit Theorem for Partial Sums of a Linear Process. Dependence in Analysis, Probability and Number Theory (The Phillipp Memorial Volume), Kendrick Press. pp. 317–323 (2010)

  36. Volný, D., Woodroofe, M.: Quenched central limit theorems for sums of stationary processes. Stat. Probab. Lett. 85, 161–167 (2014)

    Article  MathSciNet  Google Scholar 

  37. Wang, Y., Woodroofe, M.: A new criteria for the invariance principle for stationary random fields. Stat. Sin. 23, 1673–1696 (2013)

    MATH  Google Scholar 

Download references

Acknowledgements

This research was supported in part by the NSF Grant DMS–1811373. The first author would like to offer special thanks to the University of Rouen Normandie, where a large portion of this research was accomplished during her visit of the Department of Mathematics. The authors wish to thank the referee for many in-depth comments, suggestions and corrections, which have greatly improved the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Magda Peligrad.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Peligrad, M., Volný, D. Quenched Invariance Principles for Orthomartingale-Like Sequences. J Theor Probab 33, 1238–1265 (2020). https://doi.org/10.1007/s10959-019-00914-z

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10959-019-00914-z

Keywords

Mathematics Subject Classification (2010)

Navigation