Skip to main content
Log in

Law of Large Numbers for Random Walk with Unbounded Jumps and Birth and Death Process with Bounded Jumps in Random Environment

  • Published:
Journal of Theoretical Probability Aims and scope Submit manuscript

Abstract

We study a random walk with unbounded jumps in random environment. The environment is stationary and ergodic, uniformly elliptic and decays polynomially with speed \(Dj^{-(3+\varepsilon _0)}\) for some \(D>0\) and small \(\varepsilon _0>0.\) We prove a law of large numbers under the condition that the annealed mean of the hitting time of the lattice of the positive half line is finite. As the second part, we consider a birth and death process with bounded jumps in stationary and ergodic environment whose skeleton process is a random walk with unbounded jumps in random environment. Under a uniform ellipticity condition, we prove a law of large numbers and give the explicit formula of its velocity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Alili, S.: Asymptotic behavior for random walks in random environments. J. Appl. Probab. 36, 334–349 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  2. Anderson, W.J.: Continuous-Time Markov Chains: An Applications-oriented Approach. Springer, New York (1991)

    Book  MATH  Google Scholar 

  3. Andjel, E.D.: A zero or one law for one dimensional random walks in random environments. Ann. Probab. 16(2), 722–729 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  4. Bolthausen, E., Goldsheid, I.: Recurrence and transience of random walks in random environments on a strip. Commun. Math. Phys. 214, 429–447 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  5. Brémont, J.: Random walks on Z in random medium and Lyapunov spectrum. Ann. Inst. H. Poincaré Probab. Stat. 40(3), 309–336 (2004)

    MathSciNet  MATH  Google Scholar 

  6. Brémont, J.: One-dimensional finite range random walk in random medium and invariant measure equation. Ann. Inst. H. Poincaré Probab. Stat. 45, 70–103 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  7. Comets, F., Popov, S.: Ballistic regime for random walks in random environment with unbounded jumps and Knudsen billiards. Ann. Inst. H. Poincaré Probab. Stat. 48(3), 721–744 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  8. Chung, K.L.: Markov Chains with Stationary Transition Probabilities. Springer, New York (1960)

    Book  MATH  Google Scholar 

  9. Durrett, R.: Probability: Theory and Examples, 2nd edn. Duxbury Press, Belmont (1996)

    MATH  Google Scholar 

  10. Gallesco, C., Popov, S.: Random walks with unbounded jumps among random conductances I: uniform quenched CLT. Electron. J. Probab. 17(85), 1–22 (2012)

    MathSciNet  MATH  Google Scholar 

  11. Gallesco, C., Popov, S.: Random walks with unbounded jumps among random conductances II: conditional quenched CLT. ALEA, Lat. Am. J. Probab. Math. Stat. 10(1), 253–270 (2013)

    MathSciNet  MATH  Google Scholar 

  12. Hong, W.M., Wang, H.M.: Intrinsic branching structure within (L-1) random walk in random environment and its applications. Infin. Dimens. Anal. Quantum Probab. Relat. Top. 16, 1350006 (2013). [14 pages]

    Article  MathSciNet  MATH  Google Scholar 

  13. Hong, W.M., Wang, H.M.: Intrinsic branching structure within random walk on Z. Theory Probab. Appl. 58, 640–659 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  14. Hong, W.M., Zhang, L.: Branching structure for the transient (1; R)-random walk in random environment and its applications. Infin. Dimens. Anal. Quantum Probab. Relat. Top. 13(4), 589–618 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  15. Key, E.S.: Recurrence and transience criteria for random walk in a random environment. Ann. Probab. 12, 529–560 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  16. Kozlov, S.M.: The method of averaging and walks in inhomogeneous environments. Russ. Math. Surv. 40, 73–145 (1985)

    Article  MATH  Google Scholar 

  17. Lesigne, E., Volný, D.: Large deviations for martingales. Stoch. Proc. Appl. 96, 143–159 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  18. Letchikov, A.V.: Localization of one-dimensional random walks in random environments. Sov. Sci. Rev. C Math. Phys. 8, 173–220 (1989)

    MathSciNet  MATH  Google Scholar 

  19. Oseledec, V.I.: Multiplicative ergodic theorem. Characteristic Lyapunov exponents of dynamic systems. Tr. Mosk. Mat. Obs. 19, 179–210 (1968)

    MathSciNet  Google Scholar 

  20. Ritter, G.: A continuous-time analogue of random walk in a random environment. J. Appl. Probab. 17, 259–264 (1980)

    Article  MathSciNet  MATH  Google Scholar 

  21. Roitershtein, A.: Transient random walks on a strip in a random environment. Ann. Probab. 36(6), 2354–2387 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  22. Solomon, F.: Random walks in a random environment. Ann. Probab. 3, 1–31 (1975)

    Article  MATH  Google Scholar 

  23. Sznitman, A.S.: Lectures on Random Motions in Random Media, In DMV Seminar, vol. 32. Birkhauser, Basel (2002)

    Google Scholar 

  24. Zeitouni, O.: Random walks in random environment. Picard, J. (ed) LNM 1837, pp. 189-312, Springer, Berlin (2004)

Download references

Acknowledgements

The author would like to thank Professor Wenming Hong for his insightful comments. Thanks also extend to Professor Francis Comets for explaining me their results on the LLN for RWRE with unbounded jumps. At last, the author is very grateful to the anonymous referee who has read the manuscript carefully and pointed out several mistakes. His or her suggestions are very valuable for the author to revise the paper. This work is supported by National Nature Science Foundation of China (Grant No. 11501008), Nature Science Foundation of Anhui Province (Grant No. 1508085QA12) and Nature Science Foundation of Anhui Educational Committee (Grant No. KJ2014A085).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hua-Ming Wang.

Appendix: On the Existence of \(\{N_t\}_{t\ge 0}\)

Appendix: On the Existence of \(\{N_t\}_{t\ge 0}\)

Given \({{\tilde{\omega }}},\) let \(Q=(q_{ij})\) be a matrix with

$$\begin{aligned} q_{ij}=\left\{ \begin{array}{ll} \lambda _i^r,&{}\text { if } j=i+r,\ r=1,\ldots ,R; \\ \mu _{i}^l,&{}\text { if } j=i-l,\ l=1,\ldots ,L;\\ -\left( {\sum }_{i=1}^L\mu _i^l+ {\sum }_{r=1}^R\lambda _i^r\right) , &{}\text { if } j=i;\\ 0, &{}\text { otherwise.} \end{array} \right. \end{aligned}$$

Then, Q is obviously a conservative Q-matrix. Note that under (C2) of Condition C, Q is bounded from above. Hence, the process \(\{N_t\}_{t\ge 0}\) exists. See Anderson [2], Proposition 2.9, Chap. 2. Now we give a condition which implies the existence of \(\{N_t\}_{t\ge 0}\) but weaker than (C2). By some classical argument, there is at least one transition matrix \(({\overline{p}}_{{{\tilde{\omega }}}}(t,i,j))\) such that

$$\begin{aligned} \lim _{t\rightarrow 0}\frac{{\overline{p}}_{{{{\tilde{\omega }}}}}(t,i,j)-\delta _{ij}}{t}=q_{ij},\quad i,j\in {\mathbb {Z}}. \end{aligned}$$
(33)

Let \((p_{{{\tilde{\omega }}}}(h,i,j))\) be a standard transition matrix satisfying (33). Suppose that \(\{N_t\}_{t\ge 0}\) is a continuous time Markov chain with transition matrix \((p_{{{\tilde{\omega }}}}(h,i,j)).\) Set \(\tau _0=0\), and define \(\tau _{n}:=\inf \{t>\tau _{n-1}:N_t\ne N_{\tau _{n-1}}\}\) recursively for \(n\ge 1.\) Then, \(\tau _n,n\ge 0\) are the consecutive discontinuities of the process \(\{N_t\}_{t\ge 0}.\) If

$$\begin{aligned} \tilde{{\mathbb {P}}}\left( \sum _{l=1}^L\mu _0^l+\sum _{r=1}^R\lambda _0^r>0\right) =1, \end{aligned}$$

then \({{\tilde{P}}}\)-a.s., \(\tau _n<\infty , n\ge 0.\) Let \(\chi _n=N_{\tau _n},\) for \(n\ge 0.\) The process \(\{\chi _n\}_{n\ge 0}\) is known as the embedded process of \(\{N_t\}_{t\ge 0}.\)

Proposition 3

Suppose that \(\tilde{{\mathbb {P}}}\big (\sum _{l=1}^L\mu _0^l+\sum _{r=1}^R\lambda _0^r>0\big )=1\) and

$$\begin{aligned} \tilde{{\mathbb {P}}}\left( \sum _{n=1}^\infty {\left( \max _{1\le k\le R}\left\{ \sum _{r=1}^R\lambda _{nR-k}^r+\sum _{l=1}^L\mu _{nR-k}^l\right\} \right) ^{-1}}=\infty \right)= & {} 1, \\ \tilde{{\mathbb {P}}}\left( \sum _{n=-\infty }^0{\left( \max _{1\le k\le L}\left\{ \sum _{r=1}^R\lambda _{nL-k}^r+\sum _{l=1}^L\mu _{nL-k}^l\right\} \right) ^{-1}} = \infty \right)= & {} 1. \end{aligned}$$

Then, for \(\tilde{{\mathbb {P}}}\)-a.a. \({{{\tilde{\omega }}}},\) there is a unique transition matrix \((p_{{{\tilde{\omega }}}}(h,i,j))\) which satisfies (33).

Proof

Considering the process \(\{N_t\}_{t\ge 0}\) defined above, since \(\tilde{{\mathbb {P}}}\big (\sum _{l=1}^L\mu _0^l+\sum _{r=1}^R\lambda _0^r>0\big )=1,\) we have \({{\tilde{P}}}\)-a.s., \(\tau _n<\infty \) for all \( n\ge 1.\) Some classical arguments of the uniqueness of the Q-process yield that if

$$\begin{aligned} {{\tilde{P}}}\left( \lim _{n\rightarrow \infty }\tau _n=\infty \right) =1, \end{aligned}$$

then the minimal solution \(p_{{{{\tilde{\omega }}}}}(t,i,j)\) is the unique Q-transition matrix. Let \(q_{i}=-q_{ii},\ i\in {\mathbb {Z}}.\) If

$$\begin{aligned} {{\tilde{P}}}\left( \sum _{n=0}^\infty q^{-1}_{\chi _n}=\infty \right) =1, \end{aligned}$$
(34)

then we have (See Chung [8], Theorem 1 in II.19.) \({{\tilde{P}}}(\lim _{n\rightarrow \infty }\tau _n=\infty )=1.\) Next, we show (34). In fact, if the process \(\{\chi _n\}_{n\ge 0}\) is recurrent or transient to the right, it must visit at least one state of each of the sets \(B_n:=\{nR-k\}_{k=1}^R,n=1,2,\ldots \). Then \({{\tilde{P}}}\)-a.s.,

$$\begin{aligned} \sum _{n=0}^\infty q^{-1}_{\chi _n}\ge \sum _{n=1}^\infty {\left( \max _{1\le k\le R}\left\{ \sum _{r=1}^R\lambda _{nR-k}^r+\sum _{l=1}^L\mu _{nR-k}^l\right\} \right) ^{-1}}=\infty . \end{aligned}$$

Otherwise, if the process \(\{\chi _n\}_{n\ge 0}\) is transient to the left, it must visit at least one state of each of the sets \(A_n:=\{nL-k\}_{k=1}^L,n=0,-1,-2,\ldots \). It follows that \( {{\tilde{P}}}\)-a.s.,

$$\begin{aligned} \sum _{n=0}^\infty q^{-1}_{\chi _n}\ge \sum _{n=-\infty }^0{\left( \max _{1\le k\le L}\left\{ \sum _{r=1}^R\lambda _{nL-k}^r+\sum _{l=1}^L\mu _{nL-k}^l\right\} \right) ^{-1}}=\infty . \end{aligned}$$

Consequently (34) follows.\(\square \)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, HM. Law of Large Numbers for Random Walk with Unbounded Jumps and Birth and Death Process with Bounded Jumps in Random Environment. J Theor Probab 31, 619–642 (2018). https://doi.org/10.1007/s10959-016-0731-3

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10959-016-0731-3

Keywords

Mathematics Subject Classification (2010)

Navigation