Skip to main content
Log in

Estimating Averages of Order Statistics of Bivariate Functions

  • Published:
Journal of Theoretical Probability Aims and scope Submit manuscript

Abstract

We prove uniform estimates for the expected value of averages of order statistics of bivariate functions in terms of their largest values by a direct analysis. As an application, uniform estimates for the expected value of averages of order statistics of sequences of independent random variables in terms of Orlicz norms are obtained. In the case where the bivariate functions are matrices, we provide a “minimal” probability space which allows us to C-embed certain Orlicz spaces \(\ell _M^n\) into \(\ell _1^{cn^3}\), with \(c,C>0\) being absolute constants.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Bernués, J., López-Valdes, M.: Tail estimates and a random embedding of \(l_p^n\) into \(l_r^{(1+\epsilon )n}, 0<r<p<2\). Publ. Math. Debrecen 70(1–2), 9–18 (2007)

    MATH  MathSciNet  Google Scholar 

  2. Bourgain, J., Lindenstrauss, J., Milman, V.D.: Minkowski sums and symmetrizations. In: Geometric Aspects of Functional Analysis (1986/87), Lecture Notes in Math., vol. 1317, pp. 44–66. Springer, Berlin (1988)

  3. Bourgain, J., Lindenstrauss, J., Milman, V.D.: Approximation of zonoids by zonotopes. Acta Math. 162(1), 73–141 (1989)

    Article  MATH  MathSciNet  Google Scholar 

  4. Bretagnolle, J., Dacunha-Castelle, D.: Application de ltude de certaines formes linaires alatoires au plongement despaces de banach dans des espaces \(l^p\). Ann. Sci. Ecole Norm. S. 2(4), 437–480 (1969)

    Article  MATH  Google Scholar 

  5. Candes, E.J., Romberg, J., Tao, T.: Robust uncertainty principles: exact signal reconstruction from highly incomplete frequency information. IEEE Trans. Inf. Theor. 52(2), 489–509 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  6. David, H.A., Nagaraja, H.N.: Order Statistics. Wiley Series in Probability and Statistics, 3rd edn. Wiley-Interscience (Wiley), Hoboken (2003)

    Google Scholar 

  7. Friedland, O., Guédon, O.: Random embedding of \(\ell ^n_p\) into \(\ell ^N_r\). Math. Ann. 350(4), 953–972 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  8. Gordon, Y., Litvak, A., Mendelson, S., Pajor, A.: Gaussian averages of interpolated bodies and applications to approximate reconstruction. J. Approx. Theory 149(1), 59–73 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  9. Gordon, Y., Litvak, A., Schütt, C., Werner, E.: Orlicz norms of sequences of random variables. Ann. Probab. 30(4), 1833–1853 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  10. Gordon, Y., Litvak, A., Schütt, C., Werner, E.: Geometry of spaces between polytopes and related zonotopes. Bull. Sci. Math. 126(9), 733–762 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  11. Gordon, Y., Litvak, A., Schütt, C., Werner, E.: Minima of sequences of Gaussian random variables. C. R. Math. Acad. Sci. Paris 340(6), 445–448 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  12. Gordon, Y., Litvak, A.E., Schütt, C., Werner, E.: On the minimum of several random variables. Proc. Am. Math. Soc. 134(12), 3665–3675 (2006). (electronic)

    Article  MATH  MathSciNet  Google Scholar 

  13. Gordon, Y., Litvak, A.E., Schütt, C., Werner, E.: Uniform estimates for order statistics and Orlicz functions. Positivity 16(1), 1–28 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  14. Johnson, W.B., Schechtman, G.: Very tight embeddings of subspaces of \(L_p\), \(1\le p<2\), into \(l^n_p\). Geom. Funct. Anal. 13(4), 845–851 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  15. Kwapień, S., Schütt, C.: Some combinatorial and probabilistic inequalities and their application to Banach space theory. Stud. Math. 82(1), 91–106 (1985)

    Article  MATH  MathSciNet  Google Scholar 

  16. Kwapień, S., Schütt, C.: Some combinatorial and probabilistic inequalities and their application to Banach space theory. II. Stud. Math. 95(2), 141–154 (1989)

    Article  MATH  MathSciNet  Google Scholar 

  17. Cox, L.P., Castro, M., Rowstron, A.: Pos: a practical order statistics service for wireless sensor networks. In: Proceedings of the 26th IEEE International Conference on Distributed Computing Systems, ICDCS’06. IEEE Computer Society, Washington, DC, USA, pp. 52–64 (2006)

  18. Lechner, R., Passenbrunner, M., Prochno, J.: Uniform estimates for averages of order statistics of matrices. Electron. Commun. Probab. 20(27), 1–12 (2015)

    MATH  MathSciNet  Google Scholar 

  19. Leus, G., Zhi, T.: Recovering second-order statistics from compressive measurements. In: Proceedings of the IEEE International Workshop on Computational Advances in Multi-sensor Adaptive Processing, pp. 337–340 (2011)

  20. Lindenstrauss, J., Tzafriri, L.: Classical Banach Spaces. I. Sequence spaces, Ergebnisse der Mathematik und ihrer Grenzgebiete, Vol. 92. Springer, Berlin (1977)

    MATH  Google Scholar 

  21. Marčenko, V.A., Pastur, L.A.: Distribution of eigenvalues in certain sets of random matrices. Mat. Sb. (N.S.) 72(114), 507–536 (1967)

    MathSciNet  Google Scholar 

  22. Milman, V.D., Schechtman, G.: Asymptotic Theory of Finite Dimensional Normed Spaces. Springer, New York (1986)

    MATH  Google Scholar 

  23. Naor, A., Zvavitch, A.: Isomorphic embedding of \(l^n_p\), \(1<p<2\), into \(l^{(1+\epsilon )n}_1\). Israel J. Math. 122, 371–380 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  24. Pisier, G.: Un théorème sur les opérateurs linéaires entre espaces de Banach qui se factorisent par un espace de Hilbert. Ann. Sci. École Norm. Sup. (4) 13(1), 23–43 (1980)

    Article  MATH  MathSciNet  Google Scholar 

  25. Prochno, J.: A combinatorial approach to Musielak–Orlicz spaces. Banach J. Math. Anal. 7(1), 132–141 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  26. Prochno, J.: Musielak–Orlicz spaces that are isomorphic to subspaces of \(l_1\). Ann. Funct. Anal. 6(1), 84–94 (2015)

    Article  MATH  MathSciNet  Google Scholar 

  27. Prochno, J., Schütt, C.: Combinatorial inequalities and subspaces of \(L_1\). Stud. Math. 211(1), 21–39 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  28. Rao, M.M., Ren, Z.D.: Theory of Orlicz spaces. Monographs and Textbooks in Pure and Applied Mathematics, vol. 146. Marcel Dekker, New York (1991)

    Google Scholar 

  29. Rudelson, M.: Lower estimates for the singular values of random matrices. C. R. Math. Acad. Sci. Paris 342(4), 247–252 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  30. Schechtman, G.: More on embedding subspaces of \(L_p\) in \(l^n_r\). Compos. Math. 61(2), 159–169 (1987)

    MathSciNet  Google Scholar 

  31. Schütt, C.: Lorentz spaces that are isomorphic to subspaces of \(L^1\). Trans. Am. Math. Soc. 314(2), 583–595 (1989)

    Article  MATH  MathSciNet  Google Scholar 

  32. Schütt, C.: On the embedding of \(2\)-concave Orlicz spaces into \(L^1\). Stud. Math. 113(1), 73–80 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  33. Talagrand, M.: Embedding subspaces of \(L_1\) into \(l^N_1\). Proc. Am. Math. Soc. 108(2), 363–369 (1990)

    MATH  MathSciNet  Google Scholar 

  34. Zhang, Y., Lin, X., Yuan, Y., Kitsuregawa, M., Zhou, X., Yu, J.X.: Duplicate-insensitive order statistics computation over data streams. IEEE Trans. Knowl. Data Eng. 22(4), 493–507 (2010)

    Article  Google Scholar 

Download references

Acknowledgments

R. Lechner is supported by the Austrian Science Fund, FWF P23987 and FWF P22549. M. Passenbrunner is supported by the Austrian Science Fund, FWF P27723. J. Prochno is supported by the Austrian Science Fund, FWFM 1628000.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joscha Prochno.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lechner, R., Passenbrunner, M. & Prochno, J. Estimating Averages of Order Statistics of Bivariate Functions. J Theor Probab 30, 1445–1470 (2017). https://doi.org/10.1007/s10959-016-0702-8

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10959-016-0702-8

Keywords

Mathematics Subject Classification (2010)

Navigation