Skip to main content
Log in

Multivariate Higher-Degree Stochastic Increasing Convexity

  • Published:
Journal of Theoretical Probability Aims and scope Submit manuscript

Abstract

Building on the seminal work by Shaked and Shanthikumar (Adv Appl Probab 20:427–446, 1988a; Stoch Process Appl 27:1–20, 1988b), Denuit et al. (Eng Inf Sci 13:275–291, 1999; Methodol Comput Appl Probab 2:231–254, 2000; 2001) studied the stochastic s-increasing convexity properties of standard parametric families of distributions. However, the analysis is restricted there to a single parameter. As many standard families of distributions involve several parameters, multivariate higher-order stochastic convexity properties also deserve consideration for applications. This is precisely the topic of the present paper, devoted to stochastic \((s_1,s_2,\ldots ,s_d)\)-increasing convexity of distribution families indexed by a vector \((\theta _1,\theta _2,\ldots ,\theta _d)\) of parameters. This approach accounts for possible correlation in multivariate mixture models.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Notes

  1. Note, however, that in the main results of [4], non-decreasingness must be replaced with increasingness to ensure that the transformation corresponding to the conditional expectation is one-to-one.

References

  1. Belzunce, F., Ortega, E.-M., Pellerey, F., Ruiz, J.M.: Variability of total claim amounts under dependence between claims severity and number of events. Insur. Math. Econ. 38, 460–468 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  2. Chang, C.-S., Chao, X.L., Pinedo, M., Shanthikumar, J.G.: Stochastic convexity for multidimensional processes and applications. IEEE Trans Autom. Control 36, 1347–1355 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  3. Chang, C.-S., Shanthikumar, J.G., Yao, D.D.: Stochastic convexity and stochastic Majorization. In: Yao, D.D. (ed.) Stochastic Modeling and Analysis of Manufacturing Systems. Springer, New York (1994)

    Google Scholar 

  4. Denuit, M.: Positive dependence of signals. J. Appl. Probab. 47, 893–897 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  5. Denuit, M., Dhaene, J., Goovaerts, M.J., Kaas, R.: Actuarial Theory for Dependent Risks: Measures. Orders and Models. Wiley, New York (2005)

    Book  Google Scholar 

  6. Denuit, M., Lefevre, C.: Some new classes of stochastic order relations among arithmetic random variables, with applications in actuarial sciences. Insur. Math. Econ. 20, 197–214 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  7. Denuit, M., Lefevre, C.: Stochastic s-(increasing) convexity. In: Hadjisavvas, N., Martinez-Legaz, J.E., Penot, J.-P. (eds.) Generalized Convexity and Generalized Monotonicity. Springer, New York (2001)

    Google Scholar 

  8. Denuit, M., Lefevre, C., Mesfioui, M.: A class of bivariate stochastic orderings with applications in actuarial sciences. Insur. Math. Econ. 24, 31–50 (1999)

  9. Denuit, M., Lefevre, C., Mesfioui, M.: Stochastic orderings of convex-type for discrete bivariate risks. Scand. Actuar. J. 1999, 32–51 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  10. Denuit, M., Lefevre, C., Mesfioui, M.: On s-convex stochastic extrema for arithmetic risks. Insur. Math. Econ. 25, 143–155 (1999)

  11. Denuit, M., Lefevre, C., Shaked, M.: The s-convex orders among real random variables, with applications. Math. Inequal. Appl. 1, 585–613 (1998)

    MathSciNet  MATH  Google Scholar 

  12. Denuit, M., Lefevre, C., Shaked, M.: Stochastic convexity of the Poisson mixture model, with applications in actuarial sciences. Methodol. Comput. Appl. Probab. 2, 231–254 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  13. Denuit, M., Lefevre, C., Utev, S.: Generalized stochastic convexity and stochastic ordering of mixtures. Probab. Eng. Inf. Sci. 13, 275–291 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  14. Denuit, M., Mesfioui, M.: Generalized increasing convex and directionally convex orders. J. Appl. Probab. 47, 264–276 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  15. Denuit, M., Mesfioui, M.: Ordering functions of random vectors, with applications to partial sums. J. Theor. Probab. 26, 474–479 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  16. Fernandez-Ponce, J.M., Ortega, E.M., Pellerey, F.: Convex comparisons for random sums in random environments and applications. Probab. Eng. Inf. Sci. 22, 389–413 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  17. Kaas, R., Hesselager, O.: Ordering claim size distributions and mixed Poisson probabilities. Insur. Math. Econ. 17, 193–201 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  18. Meester, L.E., Shanthikumar, J.G.: Regularity of stochastic processes. A theory based on directional convexity. Probab. Eng. Inf. Sci. 7, 343–360 (1993)

    Article  Google Scholar 

  19. Nelsen, R.B.: An Introduction to Copulas, 2nd edn. Springer, New York (2006)

    MATH  Google Scholar 

  20. Ortega, E.M., Alonso, J.: Recent issues on stochastic directional convexity, and new results on the analysis of systems for communication, information, time scales and maintenance. Appl. Stoch. Models Bus. Ind. 30, 479–496 (2014)

    Article  MathSciNet  Google Scholar 

  21. Ortega, E.M., Alonso, J., Ortega, I.: Stochastic comparisons of mixtures of parametric families in stochastic epidemics. Math. Biosci. 243, 18–27 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  22. Shaked, M., Shanthikumar, J.G.: Stochastic convexity and its applications. Adv. Appl. Probab. 20, 427–446 (1988a)

    Article  MathSciNet  MATH  Google Scholar 

  23. Shaked, M., Shanthikumar, J.G.: Temporal stochastic convexity and concavity. Stoch. Process. Appl. 27, 1–20 (1988b)

    Article  MathSciNet  MATH  Google Scholar 

  24. Shaked, M., Shanthikumar, J.G.: Parametric stochastic convexity and concavity of stochastic processes. Ann. Inst. Stat. Math. 42, 509–531 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  25. Shaked, M., Shanthikumar, J.G.: Stochastic Orders. Springer, New York (2007)

    Book  MATH  Google Scholar 

Download references

Acknowledgments

The authors are grateful to an anonymous reviewer for careful reading and constructive comments and suggestions which greatly helped to improve the initial manuscript. Michel Denuit acknowledges the financial support from the contract “Projet d’Actions de Recherche Concertées” No. 12/17-045 of the “Communauté française de Belgique”, granted by the “Académie universitaire Louvain”. Mhamed Mesfioui acknowledges the financial support of the Natural Sciences and Engineering Research Council of Canada.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michel M. Denuit.

Appendix: Some Results for the Binomial Distribution

Appendix: Some Results for the Binomial Distribution

Property 6.1

Let \(X_{(n,p)}, n \in \mathbb {N}, p \in (0,1)\), denote a random variable distributed according to the Binomial distribution with mean np and variance \(np(1-p)\). With \(g^{\star }(n,p)=\mathbb {E}[g(X_{(n,p)})]\), define

$$\begin{aligned} \Delta g^{\star }(n,p)=g^{\star }(n+1,p)-g^{\star }(n,p). \end{aligned}$$

Then, we have

$$\begin{aligned} \frac{\partial g^\star }{\partial p} (n,p)= & {} n\mathbb {E} \left[ \Delta g(X_{(n-1,p)})\right] \end{aligned}$$
(6.2)
$$\begin{aligned} \Delta g^\star (n,p)= & {} p\mathbb {E}[\Delta g(X_{(n,p)})] \end{aligned}$$
(6.3)
$$\begin{aligned} \Delta \frac{\partial g^\star }{\partial p}(n,p)= & {} (n+1)p\mathbb {E}[\Delta ^2 g(X_{(n-1,p)})]+\mathbb {E}[\Delta g(X_{(n-1,p)})]. \end{aligned}$$
(6.4)

Proof

We have

$$\begin{aligned} \frac{\partial g^\star }{\partial p}(n,p)= & {} \sum _{i=1}^{n-1} g(i)i{n \atopwithdelims ()i}p^{i-1}(1-p)^{n-i}-\sum _{i=1}^{n-1} g(i)(n-i){n \atopwithdelims ()i}p^{i}(1-p)^{n-i-1}\\&+\, ng(n)p^{n-1}-ng(0)(1-p)^{n-1}. \end{aligned}$$

Using the well-known identities

$$\begin{aligned} i{n \atopwithdelims ()i}=n{n-1\atopwithdelims ()i-1 } \quad \text{ and } \quad (n-i){n \atopwithdelims ()i}=n{n-1\atopwithdelims ()i}, \end{aligned}$$

we can write

$$\begin{aligned} \frac{\partial g^\star }{\partial p} (n,p)= & {} \sum _{i=1}^{n} g(i)n{n-1 \atopwithdelims ()i-1}p^{i-1}(1-p)^{n-i} \\&-\,\sum _{i=0}^{n-1} g(i)n{n-1 \atopwithdelims ()i}p^{i}(1-p)^{n-i-1} \\= & {} \sum _{i=0}^{n-1} g(i+1)n{n-1 \atopwithdelims ()i}p^{i}(1-p)^{n-i-1} \\&-\,\sum _{i=0}^{n-1} g(i)n{n-1 \atopwithdelims ()i}p^{i}(1-p)^{n-i-1}\\= & {} n\sum _{i=0}^{n-1} \Delta g(i){n-1 \atopwithdelims ()i}p^{i}(1-p)^{n-i-1}\\= & {} n\mathbb {E} \left[ \Delta g(X_{(n-1,p)})\right] \end{aligned}$$

which ends the proof of (6.2). Now, let us show that the second equality is valid. Clearly, one has

$$\begin{aligned} \Delta g^\star (n,p)= & {} \sum _{i=0}^{n+1} g(i){n+1 \atopwithdelims ()i}p^{i}(1-p)^{n+1-i}-\sum _{i=0}^{n} g(i){n \atopwithdelims ()i}p^{i}(1-p)^{n-i}. \end{aligned}$$

Since

$$\begin{aligned} {n+1 \atopwithdelims ()i}={n \atopwithdelims ()i}+{n \atopwithdelims ()i-1}, \quad 1 \le i \le n, \end{aligned}$$

we can write

$$\begin{aligned} \Delta g^\star (n,p)= & {} g(0)(1-p)^{n+1}- g(0)(1-p)^{n}+g(n+1)p^{n+1} \\&+\,\sum _{i=1}^{n} g(i)\left( {n \atopwithdelims ()i}+{n \atopwithdelims ()i-1} \right) p^{i}(1-p)^{n+1-i} \\&-\,\sum _{i=1}^{n} g(i){n \atopwithdelims ()i}p^{i}(1-p)^{n-i} \\= & {} g(0)(1-p)^{n+1}-g(0)(1-p)^n+g(n+1)p^{n+1} \\&+\,\sum _{i=1}^{n} g(i){n \atopwithdelims ()i-1}p^{i}(1-p)^{n+1-i} \\&-\,\sum _{i=1}^{n} g(i){n \atopwithdelims ()i}p^{i+1}(1-p)^{n-i} \\= & {} \sum _{i=1}^{n+1} g(i){n \atopwithdelims ()i-1}p^{i}(1-p)^{n+1-i} -\sum _{i=0}^{n} g(i){n \atopwithdelims ()i}p^{i+1}(1-p)^{n-i}\\= & {} \sum _{i=0}^{n} g(i+1){n \atopwithdelims ()i}p^{i+1}(1-p)^{n-i} -\sum _{i=0}^{n} g(i){n \atopwithdelims ()i}p^{i+1}(1-p)^{n-i}\\= & {} p\sum _{i=0}^{n} \big (g(i+1)-g(i)\big ){n \atopwithdelims ()i}p^{i}(1-p)^{n-i}\\= & {} p\sum _{i=0}^{n} \Delta g(i){n \atopwithdelims ()i}p^{i}(1-p)^{n-i}\\= & {} p\mathbb {E}[\Delta g(X_{(n,p)})]. \end{aligned}$$

Finally, let us establish the last formula (6.4). First, recall that for any functions \(h_1\) and \(h_2:\mathbb {N}\rightarrow \mathbb {R}\), one has

$$\begin{aligned} \Delta \big (h_1(n)h_2(n)\big )=h_1(n+1)\Delta h_2(n)+h_2(n)\Delta h_1(n). \end{aligned}$$

Considering \(h_1(n)=n\) and \(h_2(n)=\mathbb {E} \left[ \Delta g(X_{(n-1,p)})\right] =(\Delta g)^\star (n-1,p)\), we get

$$\begin{aligned} \Delta \frac{\partial g^\star }{\partial p}(n,p)= & {} \Delta \big (h_1(n)h_2(n)\big )\\= & {} (n+1)\Delta (\Delta g)^\star (n-1,p)+\mathbb {E} \left[ \Delta g(X_{(n-1,p)})\right] \\= & {} (n+1)p\mathbb {E}[\Delta ^2 g(X_{(n-1,p)})]+\mathbb {E} \left[ \Delta g(X_{(n-1,p)})\right] \end{aligned}$$

so that (6.4) is indeed valid. \(\square \)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Denuit, M.M., Mesfioui, M. Multivariate Higher-Degree Stochastic Increasing Convexity. J Theor Probab 29, 1599–1623 (2016). https://doi.org/10.1007/s10959-015-0628-6

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10959-015-0628-6

Keywords

Mathematics Subject Classification

Navigation